Introduction to Point-Set Topology

Dan Swenson, Black Hills State University

Fall 2011
Outline

Metric Spaces

Topological Spaces
 Definitions
 Continuous Functions
Given any two real numbers x and y, we define the distance between x and y to be:

$$d(x, y) = |x - y|$$

Example

The distance from 2 to 6 is

$$d(2, 6) = |2 - 6| = |-4| = 4$$

This "distance" function d takes a pair of real numbers (x, y) and returns a single real number. Written formally:

$$d : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$
Given any two real numbers x and y, we define the distance between x and y to be:

$$d(x, y) = |x - y|$$
Given any two real numbers x and y, we define the distance between x and y to be:

$$d(x, y) = |x - y|$$

Example

The distance from 2 to 6 is

$$d(2, 6) = |2 - 6| = |-4| = 4$$
Given any two real numbers x and y, we define the distance between x and y to be:

$$d(x, y) = |x - y|$$

Example

The distance from 2 to 6 is

$$d(2, 6) = |2 - 6| = |-4| = 4$$

This “distance” function d takes a pair of real numbers (x, y) and returns a single real number. Written formally:
Given any two real numbers x and y, we define the distance between x and y to be:

$$d(x, y) = |x - y|$$

Example

The distance from 2 to 6 is

$$d(2, 6) = |2 - 6| = |-4| = 4$$

This “distance” function d takes a pair of real numbers (x, y) and returns a single real number. Written formally:

$$d : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$$
The distance function \(d(x, y) = |x - y| \) has several useful properties:

- \(d(x, y) \geq 0 \).
- \(d(x, y) = 0 \) if and only if \(x = y \).
- \(d(x, y) = d(y, x) \).
- \(d(x, z) \leq d(x, y) + d(y, z) \).
The distance function \(d(x, y) = |x - y| \) has several useful properties:

- \(d(x, y) \geq 0. \) (Thus we could write \(d : \mathbb{R} \times \mathbb{R} \to \mathbb{R}_{\geq 0} \))
The distance function $d(x, y) = |x - y|$ has several useful properties:

- $d(x, y) \geq 0$. (Thus we could write $d : \mathbb{R} \times \mathbb{R} \to \mathbb{R}_{\geq 0}$)
- $d(x, y) = 0$ if and only if $x = y$.

Example: Suppose we need to find all numbers which lie less than distance 3 away from the number 5. Then we wish to solve:

$$|x - 5| < 3 \iff 2 < x < 8$$

The set of points whose distance from 5 is less than 3 is the open interval $(2, 8)$.
The distance function \(d(x, y) = |x - y| \) has several useful properties:

- \(d(x, y) \geq 0. \) (Thus we could write \(d : \mathbb{R} \times \mathbb{R} \to \mathbb{R}_{\geq 0} \))
- \(d(x, y) = 0 \) if and only if \(x = y. \)
- \(d(x, y) = d(y, x). \)
The distance function \(d(x, y) = |x - y| \) has several useful properties:

- \(d(x, y) \geq 0 \). (Thus we could write \(d : \mathbb{R} \times \mathbb{R} \to \mathbb{R}_{\geq 0} \))
- \(d(x, y) = 0 \) if and only if \(x = y \).
- \(d(x, y) = d(y, x) \).
- \(d(x, z) \leq d(x, y) + d(y, z) \).
The distance function \(d(x, y) = |x - y| \) has several useful properties:

- \(d(x, y) \geq 0 \). (Thus we could write \(d : \mathbb{R} \times \mathbb{R} \to \mathbb{R}_{\geq 0} \))
- \(d(x, y) = 0 \) if and only if \(x = y \).
- \(d(x, y) = d(y, x) \).
- \(d(x, z) \leq d(x, y) + d(y, z) \).

Example: Suppose we need to find all numbers which lie less than distance 3 away from the number 5. Then we wish to solve:
The distance function \(d(x, y) = |x - y| \) has several useful properties:

- \(d(x, y) \geq 0 \). (Thus we could write \(d : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}_{\geq 0} \))
- \(d(x, y) = 0 \) if and only if \(x = y \).
- \(d(x, y) = d(y, x) \).
- \(d(x, z) \leq d(x, y) + d(y, z) \).

Example: Suppose we need to find all numbers which lie less than distance 3 away from the number 5. Then we wish to solve:

\[
|x - 5| < 3
\]

The set of points whose distance from 5 is less than 3 is the open interval \((2, 8)\).
The distance function \(d(x, y) = |x - y| \) has several useful properties:

- \(d(x, y) \geq 0 \). (Thus we could write \(d : \mathbb{R} \times \mathbb{R} \to \mathbb{R}_{\geq 0} \))
- \(d(x, y) = 0 \) if and only if \(x = y \).
- \(d(x, y) = d(y, x) \).
- \(d(x, z) \leq d(x, y) + d(y, z) \).

Example: Suppose we need to find all numbers which lie less than distance 3 away from the number 5. Then we wish to solve:

\[
|x - 5| < 3 \\
-3 < x - 5 < 3
\]
The distance function \(d(x, y) = |x - y| \) has several useful properties:

- \(d(x, y) \geq 0 \). (Thus we could write \(d: \mathbb{R} \times \mathbb{R} \to \mathbb{R}_{\geq 0} \))
- \(d(x, y) = 0 \) if and only if \(x = y \).
- \(d(x, y) = d(y, x) \).
- \(d(x, z) \leq d(x, y) + d(y, z) \).

Example: Suppose we need to find all numbers which lie less than distance 3 away from the number 5. Then we wish to solve:

\[
|x - 5| < 3
\]

\[
-3 < x - 5 < 3
\]

\[
2 < x < 8
\]
The distance function $d(x, y) = |x - y|$ has several useful properties:

- $d(x, y) \geq 0$. (Thus we could write $d : \mathbb{R} \times \mathbb{R} \to \mathbb{R}_{\geq 0}$)
- $d(x, y) = 0$ if and only if $x = y$.
- $d(x, y) = d(y, x)$.
- $d(x, z) \leq d(x, y) + d(y, z)$.

Example: Suppose we need to find all numbers which lie less than distance 3 away from the number 5. Then we wish to solve:

$$|x - 5| < 3$$

$$-3 < x - 5 < 3$$

$$2 < x < 8$$

The set of points whose distance from 5 is less than 3 is the open interval $(2, 8)$.
The plane $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ also has a distance function, D. This function takes two points (a, b) and (x, y) in \mathbb{R}^2 and returns one nonnegative real number.
Two-dimensional real space

The plane $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ also has a distance function, D. This function takes two points (a, b) and (x, y) in \mathbb{R}^2 and returns one nonnegative real number. This is the “distance formula”:
Two-dimensional real space

The plane $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ also has a distance function, D. This function takes two points (a, b) and (x, y) in \mathbb{R}^2 and returns one nonnegative real number. This is the “distance formula”:

$D: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}_{\geq 0}$ is defined by:

$$D((x, y), (a, b)) = \sqrt{(x - a)^2 + (y - b)^2}$$
Two-dimensional real space

The plane $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ also has a distance function, D. This function takes two points (a, b) and (x, y) in \mathbb{R}^2 and returns one nonnegative real number. This is the “distance formula”:

$$D : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}_{\geq 0}$$

is defined by:

$$D((x, y), (a, b)) = \sqrt{(x - a)^2 + (y - b)^2}$$

We describe the set of points (x, y) in \mathbb{R}^2 which lie fewer than r units away from the point (a, b):
Two-dimensional real space

The plane $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ also has a distance function, D. This function takes two points (a, b) and (x, y) in \mathbb{R}^2 and returns one nonnegative real number. This is the “distance formula”:

$$D : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}_{\geq 0}$$

is defined by:

$$D((x, y), (a, b)) = \sqrt{(x - a)^2 + (y - b)^2}$$

We describe the set of points (x, y) in \mathbb{R}^2 which lie fewer than r units away from the point (a, b):

$$\sqrt{(x - a)^2 + (y - b)^2} < r$$
Two-dimensional real space

The plane $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$ also has a distance function, D. This function takes two points (a, b) and (x, y) in \mathbb{R}^2 and returns one nonnegative real number. This is the “distance formula”:

$$D : \mathbb{R}^2 \times \mathbb{R}^2 \rightarrow \mathbb{R}_{\geq 0} \text{ is defined by:}$$

$$D((x, y), (a, b)) = \sqrt{(x - a)^2 + (y - b)^2}$$

We describe the set of points (x, y) in \mathbb{R}^2 which lie fewer than r units away from the point (a, b):

$$\sqrt{(x - a)^2 + (y - b)^2} < r$$

The points (x, y) which satisfy this inequality make up the open disc of radius r, centered at (a, b).
The function

\[D((x, y), (a, b)) = \sqrt{(x - a)^2 + (y - b)^2} \]

satisfies the same useful properties as the absolute value function \(d \) did:

1. \(D((x, y), (a, b)) \geq 0 \)
2. \(D((x, y), (a, b)) = 0 \) if and only if \((a, b) = (x, y))\)
3. \(D((x, y), (a, b)) = D((a, b), (x, y)) \)
4. \(D((x, y), (a, b)) \leq D((x, y), (z, w)) + D((z, w), (a, b)) \) (Triangle Inequality)
The function

\[D((x, y), (a, b)) = \sqrt{(x - a)^2 + (y - b)^2} \]

satisfies the same useful properties as the absolute value function \(d \) did:

- \(D((x, y), (a, b)) \geq 0. \)
The function

\[D((x, y), (a, b)) = \sqrt{(x - a)^2 + (y - b)^2} \]

satisfies the same useful properties as the absolute value function \(d \) did:

- \(D((x, y), (a, b)) \geq 0. \)
- \(D((x, y), (a, b)) = 0 \) if and only if \((a, b) = (x, y) \).
The function

\[D((x, y), (a, b)) = \sqrt{(x - a)^2 + (y - b)^2} \]

satisfies the same useful properties as the absolute value function \(d \) did:

- \(D((x, y), (a, b)) \geq 0. \)
- \(D((x, y), (a, b)) = 0 \) if and only if \((a, b) = (x, y)\).
- \(D((x, y), (a, b)) = D((a, b), (x, y)) \).
The function

\[D((x, y), (a, b)) = \sqrt{(x - a)^2 + (y - b)^2} \]

satisfies the same useful properties as the absolute value function \(d \) did:

- \(D((x, y), (a, b)) \geq 0 \).
- \(D((x, y), (a, b)) = 0 \) if and only if \((a, b) = (x, y) \).
- \(D((x, y), (a, b)) = D((a, b), (x, y)) \).
- \(D((x, y), (a, b)) \leq D((x, y), (z, w)) + D((z, w), (a, b)) \).
The function

\[D((x, y), (a, b)) = \sqrt{(x - a)^2 + (y - b)^2} \]

satisfies the same useful properties as the absolute value function \(d\) did:

- \(D((x, y), (a, b)) \geq 0\).
- \(D((x, y), (a, b)) = 0\) if and only if \((a, b) = (x, y)\).
- \(D((x, y), (a, b)) = D((a, b), (x, y))\).
- \(D((x, y), (a, b)) \leq D((x, y), (z, w)) + D((z, w), (a, b))\). (Triangle Inequality)
Definition

A metric space is a set X, along with a function $d : X \times X \rightarrow \mathbb{R}_{\geq 0}$, satisfying:

1. $d(x, y) = 0$ if and only if $x = y$.
2. $d(x, y) = d(y, x)$.
3. $d(x, z) \leq d(x, y) + d(y, z)$.

The function d is called a metric on X. The elements of X are called points.

Example

We have seen that the functions d and D are metrics on the real line \mathbb{R} and the real plane \mathbb{R}^2, respectively. (These metrics d and D are called the "Euclidean" metrics on \mathbb{R} and \mathbb{R}^2, respectively.)
Definition

A metric space is a set X, along with a function $d : X \times X \rightarrow \mathbb{R}_{\geq 0}$, satisfying:

- $d(x, y) = 0$ if and only if $x = y$.

Definition

A **metric space** is a set X, along with a function $d : X \times X \to \mathbb{R}_{\geq 0}$, satisfying:

- $d(x, y) = 0$ if and only if $x = y$.
- $d(x, y) = d(y, x)$.
- $d(x, z) \leq d(x, y) + d(y, z)$.

The function d is called a metric on X. The elements of X are called points.
Definition

A *metric space* is a set X, along with a function $d : X \times X \rightarrow \mathbb{R}_{\geq 0}$, satisfying:

- $d(x, y) = 0$ if and only if $x = y$.
- $d(x, y) = d(y, x)$.
- $d(x, z) \leq d(x, y) + d(y, z)$.
Definition

A metric space is a set X, along with a function $d : X \times X \rightarrow \mathbb{R}_{\geq 0}$, satisfying:

- $d(x, y) = 0$ if and only if $x = y$.
- $d(x, y) = d(y, x)$.
- $d(x, z) \leq d(x, y) + d(y, z)$.

The function d is called a metric on X. The elements of X are called points.
Definition

A **metric space** is a set X, along with a function $d : X \times X \rightarrow \mathbb{R}_{\geq 0}$, satisfying:

- $d(x, y) = 0$ if and only if $x = y$.
- $d(x, y) = d(y, x)$.
- $d(x, z) \leq d(x, y) + d(y, z)$.

The function d is called a **metric** on X. The elements of X are called **points**.

Example

We have seen that the functions d and D are metrics on the real line \mathbb{R} and the real plane \mathbb{R}^2, respectively.
Definition

A **metric space** is a set X, along with a function $d : X \times X \to \mathbb{R}_{\geq 0}$, satisfying:
- $d(x, y) = 0$ if and only if $x = y$.
- $d(x, y) = d(y, x)$.
- $d(x, z) \leq d(x, y) + d(y, z)$.

The function d is called a **metric** on X. The elements of X are called **points**.

Example

We have seen that the functions d and D are metrics on the real line \mathbb{R} and the real plane \mathbb{R}^2, respectively. (These metrics d and D are called the “Euclidean” metrics on \mathbb{R} and \mathbb{R}^2, respectively.)
Example

Assuming there are no one-way roads or other oddities, any system of roads is a metric space, under the metric

\[d(x, y) = \text{the length of the shortest route from } x \text{ to } y. \]
More examples

Example

Assuming there are no one-way roads or other oddities, any system of roads is a metric space, under the metric

\[d(x, y) = \text{the length of the shortest route from } x \text{ to } y. \]

Example

Let \(X \) be any set, and define a function \(d : X \times X \to \mathbb{R}_{\geq 0} \) by
More examples

Example

Assuming there are no one-way roads or other oddities, any system of roads is a metric space, under the metric

\[d(x, y) = \text{the length of the shortest route from } x \text{ to } y. \]

Example

Let \(X \) be any set, and define a function \(d : X \times X \to \mathbb{R}_{\geq 0} \) by

\[
d(x, y) = \begin{cases}
0 & \text{if } x = y \\
1 & \text{if } x \neq y
\end{cases}
\]
More examples

Example

Assuming there are no one-way roads or other oddities, any system of roads is a metric space, under the metric

\[d(x, y) = \text{the length of the shortest route from } x \text{ to } y. \]

Example

Let \(X \) be any set, and define a function \(d : X \times X \to \mathbb{R}_{\geq 0} \) by

\[d(x, y) = \begin{cases}
0 & \text{if } x = y \\
1 & \text{if } x \neq y
\end{cases} \]

Then \(d \) is a metric on \(X \), called the \textit{discrete metric}.
Example

Let \mathbb{F}_2^n be the set of all “words” of length n, where every “letter” must be either a “0” or a “1”. For instance, $(0, 1, 1, 1, 0, 1)$ and $(1, 1, 0, 0, 1, 1)$ are elements of \mathbb{F}_2^6.

Proof: Let x and y be words in \mathbb{F}_2^n. Clearly $d(x, y)$ is a nonnegative integer; hence a nonnegative real number. Certainly $d(x, y) = d(y, x)$. If $x = y$ (that is, x and y are the same word), then x and y will not differ in any entry, in which case $d(x, y) = 0$. However, if $x \neq y$, then x and y will differ in at least one entry, so $d(x, y) > 0$. We have the Triangle Inequality left to prove.

Exercise. □

What if our alphabet has more than 2 letters (say, 26)?
Example

Let \mathbb{F}_2^n be the set of all “words” of length n, where every “letter” must be either a “0” or a “1”. For instance, $(0, 1, 1, 1, 0, 1)$ and $(1, 1, 0, 0, 1, 1)$ are elements of \mathbb{F}_2^6. Then \mathbb{F}_2^n is a metric space under the metric $d(x, y) =$ the number of entries in which the words x and y differ.
Example

Let \mathbb{F}_2^n be the set of all “words” of length n, where every “letter” must be either a “0” or a “1”. For instance, $(0, 1, 1, 1, 0, 1)$ and $(1, 1, 0, 0, 1, 1)$ are elements of \mathbb{F}_2^6. Then \mathbb{F}_2^n is a metric space under the metric $d(x, y) =$ the number of entries in which the words x and y differ.

Proof: Let x and y be words in \mathbb{F}_2^n. Clearly $d(x, y)$ is a nonnegative integer; hence a nonnegative real number.
Example

Let \mathbb{F}_2^n be the set of all “words” of length n, where every “letter” must be either a “0” or a “1”. For instance, $(0, 1, 1, 1, 0, 1)$ and $(1, 1, 0, 0, 1, 1)$ are elements of \mathbb{F}_2^6. Then \mathbb{F}_2^n is a metric space under the metric $d(x, y) =$ the number of entries in which the words x and y differ.

Proof: Let x and y be words in \mathbb{F}_2^n. Clearly $d(x, y)$ is a nonnegative integer; hence a nonnegative real number. Certainly $d(x, y) = d(y, x)$.

Exercise.
Example

Let \mathbb{F}_2^n be the set of all “words” of length n, where every “letter” must be either a “0” or a “1”. For instance, $(0, 1, 1, 1, 0, 1)$ and $(1, 1, 0, 0, 1, 1)$ are elements of \mathbb{F}_2^6. Then \mathbb{F}_2^n is a metric space under the metric $d(x, y) =$ the number of entries in which the words x and y differ.

Proof: Let x and y be words in \mathbb{F}_2^n. Clearly $d(x, y)$ is a nonnegative integer; hence a nonnegative real number. Certainly $d(x, y) = d(y, x)$. If $x = y$ (that is, x and y are the same word), then x and y will not differ in any entry, in which case $d(x, y) = 0$. However, if $x \neq y$, then x and y will differ in at least one entry, so $d(x, y) > 0$.

Exercise.
Example

Let \(F^n_2 \) be the set of all “words” of length \(n \), where every “letter” must be either a “0” or a “1”. For instance, \((0, 1, 1, 1, 0, 1)\) and \((1, 1, 0, 0, 1, 1)\) are elements of \(F^6_2 \). Then \(F^n_2 \) is a metric space under the metric \(d(x, y) = \) the number of entries in which the words \(x \) and \(y \) differ.

Proof: Let \(x \) and \(y \) be words in \(F^n_2 \). Clearly \(d(x, y) \) is a nonnegative integer; hence a nonnegative real number. Certainly \(d(x, y) = d(y, x) \). If \(x = y \) (that is, \(x \) and \(y \) are the same word), then \(x \) and \(y \) will not differ in any entry, in which case \(d(x, y) = 0 \). However, if \(x \neq y \), then \(x \) and \(y \) will differ in at least one entry, so \(d(x, y) > 0 \).

We have the Triangle Inequality left to prove.
Example

Let \mathbb{F}_2^n be the set of all “words” of length n, where every “letter” must be either a “0” or a “1”. For instance, $(0, 1, 1, 1, 0, 1)$ and $(1, 1, 0, 0, 1, 1)$ are elements of \mathbb{F}_2^6. Then \mathbb{F}_2^n is a metric space under the metric $d(x, y) =$ the number of entries in which the words x and y differ.

Proof: Let x and y be words in \mathbb{F}_2^n. Clearly $d(x, y)$ is a nonnegative integer; hence a nonnegative real number. Certainly $d(x, y) = d(y, x)$. If $x = y$ (that is, x and y are the same word), then x and y will not differ in any entry, in which case $d(x, y) = 0$. However, if $x \neq y$, then x and y will differ in at least one entry, so $d(x, y) > 0$.

We have the Triangle Inequality left to prove. Exercise. □
Example

Let \mathbb{F}_2^n be the set of all “words” of length n, where every “letter” must be either a “0” or a “1”. For instance, $(0, 1, 1, 1, 0, 1)$ and $(1, 1, 0, 0, 1, 1)$ are elements of \mathbb{F}_2^6. Then \mathbb{F}_2^n is a metric space under the metric $d(x, y) = \text{the number of entries in which the words } x \text{ and } y \text{ differ}.$

Proof: Let x and y be words in \mathbb{F}_2^n. Clearly $d(x, y)$ is a nonnegative integer; hence a nonnegative real number. Certainly $d(x, y) = d(y, x)$. If $x = y$ (that is, x and y are the same word), then x and y will not differ in any entry, in which case $d(x, y) = 0$. However, if $x \neq y$, then x and y will differ in at least one entry, so $d(x, y) > 0$.

We have the Triangle Inequality left to prove. Exercise. □

What if our alphabet has more than 2 letters (say, 26)?
Which of the following functions are metrics on the real plane \mathbb{R}^2?

- $d_1((x, y), (a, b)) = \sqrt{(x - a)^2 + (y - b)^2}$
Which of the following functions are metrics on the real plane \mathbb{R}^2?

- $d_1((x, y), (a, b)) = \sqrt{(x - a)^2 + (y - b)^2}$
- $d_2((x, y), (a, b)) = \max(|x - a|, |y - b|)$
Which of the following functions are metrics on the real plane \mathbb{R}^2?

- $d_1((x, y), (a, b)) = \sqrt{(x - a)^2 + (y - b)^2}$
- $d_2((x, y), (a, b)) = \max(|x - a|, |y - b|)$
- $d_3((x, y), (a, b)) = |x - a| + |y - b|$
Which of the following functions are metrics on the real plane \mathbb{R}^2?

- $d_1((x, y), (a, b)) = \sqrt{(x - a)^2 + (y - b)^2}$
- $d_2((x, y), (a, b)) = \max(|x - a|, |y - b|)$
- $d_3((x, y), (a, b)) = |x - a| + |y - b|$
- $d_4((x, y), (a, b)) = \begin{cases} 0 & \text{if } (x, y) = (a, b) \\ \frac{1}{2} & \text{if } (x, y) \neq (a, b) \end{cases}$
Which of the following functions are metrics on the real plane \mathbb{R}^2?

- $d_1((x, y), (a, b)) = \sqrt{(x - a)^2 + (y - b)^2}$
- $d_2((x, y), (a, b)) = \max(|x - a|, |y - b|)$
- $d_3((x, y), (a, b)) = |x - a| + |y - b|$
- $d_4((x, y), (a, b)) = \begin{cases} 0 & \text{if } (x, y) = (a, b) \\ \frac{1}{2} & \text{if } (x, y) \neq (a, b) \end{cases}$
- $d_5((x, y), (a, b)) = \begin{cases} 0 & \text{if } (x, y) = (a, b) \\ 2 & \text{if } (x, y) \neq (a, b) \end{cases}$
Which of the following functions are metrics on the real plane \mathbb{R}^2?

- $d_1((x, y), (a, b)) = \sqrt{(x - a)^2 + (y - b)^2}$
- $d_2((x, y), (a, b)) = \max(|x - a|, |y - b|)$
- $d_3((x, y), (a, b)) = |x - a| + |y - b|$
- $d_4((x, y), (a, b)) = \begin{cases} 0 & \text{if } (x, y) = (a, b) \\ \frac{1}{2} & \text{if } (x, y) \neq (a, b) \end{cases}$
- $d_5((x, y), (a, b)) = \begin{cases} 0 & \text{if } (x, y) = (a, b) \\ 2 & \text{if } (x, y) \neq (a, b) \end{cases}$
- $d_6((x, y), (a, b)) = (|x - a| + 1) \ast (|y - b| + 1) - 1$
Which of the following functions are metrics on the real plane \mathbb{R}^2?

- $d_1((x, y), (a, b)) = \sqrt{(x - a)^2 + (y - b)^2}$ Euclidean metric
- $d_2((x, y), (a, b)) = \max(|x - a|, |y - b|)$ chessboard metric
- $d_3((x, y), (a, b)) = |x - a| + |y - b|$ taxicab metric
- $d_4((x, y), (a, b)) = \begin{cases} 0 & \text{if } (x, y) = (a, b) \\ \frac{1}{2} & \text{if } (x, y) \neq (a, b) \end{cases}$ discrete metric
- $d_5((x, y), (a, b)) = \begin{cases} 0 & \text{if } (x, y) = (a, b) \\ 2 & \text{if } (x, y) \neq (a, b) \end{cases}$ discrete metric
- $d_6((x, y), (a, b)) = (|x - a| + 1) \times (|y - b| + 1) - 1$ Not a metric—why?
Definition

Let X be a metric space, under the metric d, and let $x \in X$.

Thus $B_r(x)$ is the set of points which are distance less than r away from the point x. A subset U of X is called open if for every $u \in U$, there exists $r > 0$ such that $B_r(u) \subseteq U$.

Dan Swenson, Black Hills State University
Introduction to Point-Set Topology
Definition

Let \(X \) be a metric space, under the metric \(d \), and let \(x \in X \).

- The open ball of radius \(r \) in \(X \), centered at \(x \), is the set \(B_r(x) = \{ y \in X \mid d(x, y) < r \} \).
Definition

Let X be a metric space, under the metric d, and let $x \in X$.

- The open ball of radius r in X, centered at x, is the set $B_r(x) = \{y \in X | d(x, y) < r\}$. Thus $B_r(x)$ is the set of points which are distance less than r away from the point x.

Dan Swenson, Black Hills State University

Introduction to Point-Set Topology
Definition

Let X be a metric space, under the metric d, and let $x \in X$.

The open ball of radius r in X, centered at x, is the set $B_r(x) = \{y \in X | d(x, y) < r\}$. Thus $B_r(x)$ is the set of points which are distance less than r away from the point x.

A subset U of X is called open if for every $u \in U$, there exists $r > 0$ such that $B_r(u) \subseteq U$.
Example

Recall that \mathbb{R} is a metric space under $d(x, y) = |x - y|$.
Example

Recall that \mathbb{R} is a metric space under $d(x, y) = |x - y|$.

The open ball in \mathbb{R} of radius $r = 3$, centered at $x = 5$, is the open interval $(2, 8)$.

The interval $U = (3, 4)$ is open in \mathbb{R}, since for any $u \in U$ there is an r such that the open ball $B_r(u)$ is contained in U: we can take $r = \frac{1}{2} \min(|u - 3|, |u - 4|)$.

For instance, suppose $u = 3.1 \in (3, 4) = U$. Then letting $r = 0.05$, we have $B_{0.05}(3.1) = (3.05, 3.15) \subseteq (3, 4)$.

Dan Swenson, Black Hills State University
Example

Recall that \mathbb{R} is a metric space under $d(x, y) = |x - y|$.

- The open ball in \mathbb{R} of radius $r = 3$, centered at $x = 5$, is the open interval $(2, 8)$.
- The interval $U = (3, 4)$ is open in \mathbb{R}, since for any $u \in U$ there is an r such that the open ball $B_r(u)$ is contained in U:
Example

Recall that \(\mathbb{R} \) is a metric space under \(d(x, y) = |x - y| \).

- The open ball in \(\mathbb{R} \) of radius \(r = 3 \), centered at \(x = 5 \), is the open interval \((2, 8)\).

- The interval \(U = (3, 4) \) is open in \(\mathbb{R} \), since for any \(u \in U \) there is an \(r \) such that the open ball \(B_r(u) \) is contained in \(U \): we can take \(r = \frac{1}{2} \min(|u - 3|, |u - 4|) \).
Example

Recall that \mathbb{R} is a metric space under $d(x, y) = |x - y|$.

- The open ball in \mathbb{R} of radius $r = 3$, centered at $x = 5$, is the open interval $(2, 8)$.

- The interval $U = (3, 4)$ is open in \mathbb{R}, since for any $u \in U$ there is an r such that the open ball $B_r(u)$ is contained in U: we can take $r = \frac{1}{2} \min(|u - 3|, |u - 4|)$.

For instance, suppose $u = 3.1 \in (3, 4) = U$.
Example

Recall that \mathbb{R} is a metric space under $d(x, y) = |x - y|$.

- The open ball in \mathbb{R} of radius $r = 3$, centered at $x = 5$, is the open interval $(2, 8)$.
- The interval $U = (3, 4)$ is open in \mathbb{R}, since for any $u \in U$ there is an r such that the open ball $B_r(u)$ is contained in U: we can take $r = \frac{1}{2} \min(|u - 3|, |u - 4|)$.

For instance, suppose $u = 3.1 \in (3, 4) = U$. Then letting $r = 0.05$, we have...
Example

Recall that \mathbb{R} is a metric space under $d(x, y) = |x - y|$.

- The open ball in \mathbb{R} of radius $r = 3$, centered at $x = 5$, is the open interval $(2, 8)$.

- The interval $U = (3, 4)$ is open in \mathbb{R}, since for any $u \in U$ there is an r such that the open ball $B_r(u)$ is contained in U: we can take $r = \frac{1}{2} \min(|u - 3|, |u - 4|)$.

For instance, suppose $u = 3.1 \in (3, 4) = U$. Then letting $r = 0.05$, we have $B_{0.05}(3.1) = (3.05, 3.15)$.
Example

Recall that \(\mathbb{R} \) is a metric space under \(d(x, y) = |x - y| \).

- The open ball in \(\mathbb{R} \) of radius \(r = 3 \), centered at \(x = 5 \), is the open interval \((2, 8)\).

- The interval \(U = (3, 4) \) is open in \(\mathbb{R} \), since for any \(u \in U \) there is an \(r \) such that the open ball \(B_r(u) \) is contained in \(U \): we can take \(r = \frac{1}{2} \min(|u - 3|, |u - 4|) \).

For instance, suppose \(u = 3.1 \in (3, 4) = U \). Then letting \(r = 0.05 \), we have \(B_{0.05}(3.1) = (3.05, 3.15) \subseteq (3, 4) \).
Exercise: For each of the metrics d_1, \ldots, d_5 defined in the previous exercise, what does the open ball of radius 1, centered at $(0,0)$, look like?
A word on intersections

Let A_1, A_2 be sets. We define

$$A_1 \cap A_2 = \{ x \mid x \in A_1 \text{ and } x \in A_2 \} = \{ x \mid x \text{ is in both } A_1 \text{ and } A_2 \}$$
A word on intersections

Let A_1, A_2 be sets. We define

$$A_1 \cap A_2 = \{ x | x \in A_1 \text{ and } x \in A_2 \} = \{ x | x \text{ is in both } A_1 \text{ and } A_2 \} = \{ x | x \in A_i \text{ for every } i \in \{1, 2\} \}.$$
A word on intersections

Let A_1, A_2 be sets. We define

$$A_1 \cap A_2 = \{ x | x \in A_1 \text{ and } x \in A_2 \} = \{ x | x \text{ is in both } A_1 \text{ and } A_2 \} = \{ x | x \in A_i \text{ for every } i \in \{1, 2\} \}.$$

Similarly, suppose that B_1, B_2, B_3, \ldots are sets. We define

$$\bigcap_{i=1}^{\infty} B_i = \{ x | x \in B_i, \text{ for every } i \in \{1, 2, 3, \ldots\} \}.$$
A word on intersections

Let A_1, A_2 be sets. We define

$$A_1 \cap A_2 = \{ x | x \in A_1 \text{ and } x \in A_2 \} = \{ x | x \text{ is in both } A_1 \text{ and } A_2 \}$$

$$= \{ x | x \in A_i \text{ for every } i \in \{ 1, 2 \} \}.$$

Similarly, suppose that B_1, B_2, B_3, \ldots are sets. We define

$$\bigcap_{i=1}^{\infty} B_i = \{ x | x \in B_i, \text{ for every } i \in \{ 1, 2, 3, \ldots \} \}.$$

Finally, let I be any set, and assume that for each $i \in I$ there is a set C_i. We define

$$\bigcap_{i \in I} C_i = \{ x | x \in C_i, \text{ for every } i \in I \}.$$
A word on unions

Let A_1, A_2 be sets. We define

$$A_1 \cup A_2 = \{x | x \in A_1 \text{ or } x \in A_2\}$$
A word on unions

Let A_1, A_2 be sets. We define

$$A_1 \cup A_2 = \{ x | x \in A_1 \text{ or } x \in A_2 \} = \{ x | x \text{ is in at least one of } A_1, A_2 \}$$
A word on unions

Let A_1, A_2 be sets. We define

$$A_1 \cup A_2 = \{x \mid x \in A_1 \text{ or } x \in A_2\} = \{x \mid x \text{ is in at least one of } A_1, A_2\} = \{x \mid x \in A_i \text{ for at least one } i \in \{1, 2\}\}.$$
A word on unions

Let A_1, A_2 be sets. We define

$$A_1 \cup A_2 = \{ x \mid x \in A_1 \text{ or } x \in A_2 \} = \{ x \mid x \text{ is in at least one of } A_1, A_2 \} = \{ x \mid x \in A_i \text{ for at least one } i \in \{1, 2\} \}.$$

Similarly, suppose that B_1, B_2, B_3, \ldots are sets. We define

$$\bigcup_{i=1}^{\infty} B_i = \{ x \mid x \in B_i \text{ for at least one } i \in \{1, 2, 3, \ldots\} \}.$$
A word on unions

Let A_1, A_2 be sets. We define

$$A_1 \cup A_2 = \{x| x \in A_1 \text{ or } x \in A_2\} = \{x| x \text{ is in at least one of } A_1, A_2\}$$

$$= \{x| x \in A_i \text{ for at least one } i \in \{1, 2\}\}.$$

Similarly, suppose that B_1, B_2, B_3, \ldots are sets. We define

$$\bigcup_{i=1}^{\infty} B_i = \{x| x \in B_i \text{ for at least one } i \in \{1, 2, 3, \ldots\}\}.$$

Finally, let I be any set, and assume that for each $i \in I$ there is a set C_i. We define

$$\bigcup_{i \in I} C_i = \{x| x \in C_i \text{ for at least one } i \in I\}.$$
Theorem

Let (X, d) be a metric space.
Theorem
Let (X, d) be a metric space.

- $i)$ X is always an open subset of itself.
Theorem

Let \((X, d)\) be a metric space.

- i) \(X\) is always an open subset of itself.
- ii) The empty set \(\emptyset\) is always an open subset of \(X\).
Theorem

Let \((X, d)\) be a metric space.

- i) \(X\) is always an open subset of itself.
- ii) The empty set \(\emptyset\) is always an open subset of \(X\).
- iii) If \(U_1, U_2, \ldots U_n\) are open subsets of \(X\), then the finite intersection \(U_1 \cap U_2 \cap \ldots \cap U_n\) is open.
Theorem

Let \((X, d)\) be a metric space.

- i) \(X\) is always an open subset of itself.
- ii) The empty set \(\emptyset\) is always an open subset of \(X\).
- iii) If \(U_1, U_2, \ldots, U_n\) are open subsets of \(X\), then the finite intersection \(U_1 \cap U_2 \cap \ldots \cap U_n\) is open.
- iv) If \(U_i\) is open for all \(i \in I\), then the union \(\bigcup_{i \in I} U_i\) is open.

Proof of (ii) and (iii) (others left as exercises):

- ii) This statement is true vacuously; if it were false, then there would need to be an \(x \in \emptyset\) for which we could not find an appropriate \(B_{r}(x)\). No such \(x\) exists, so we are done.
- iii) Let \(x \in U_1 \cap \ldots \cap U_n\). Each \(U_i\) is open, so there are positive real numbers \(r_1, r_2, \ldots, r_n\), such that \(B_{r_i}(x) \subseteq U_i\) for each \(i\). Let \(r = \min(r_1, \ldots, r_n)\). Then \(B_{r}(x) \subseteq U_i\) for each \(i\), so \(B_{r}(x) \subseteq \bigcap_{i=1}^n U_i\). □
Theorem

Let \((X, d)\) be a metric space.

i) \(X\) is always an open subset of itself.

ii) The empty set \(\emptyset\) is always an open subset of \(X\).

iii) If \(U_1, U_2, \ldots U_n\) are open subsets of \(X\), then the finite intersection \(U_1 \cap U_2 \cap \ldots \cap U_n\) is open.

iv) If \(U_i\) is open for all \(i \in I\), then the union \(\bigcup_{i \in I} U_i\) is open.

Proof of (ii) and (iii) (others left as exercises):

ii) This statement is true \textit{vacuously}; if it were false, then there would need to be an \(x \in \emptyset\) for which we could not find an appropriate \(B_r(x)\).
Theorem

Let \((X, d)\) be a metric space.

- \(i\) X is always an open subset of itself.
- \(ii\) The empty set \(\emptyset\) is always an open subset of \(X\).
- \(iii\) If \(U_1, U_2, \ldots, U_n\) are open subsets of \(X\), then the finite intersection \(U_1 \cap U_2 \cap \ldots \cap U_n\) is open.
- \(iv\) If \(U_i\) is open for all \(i \in I\), then the union \(\bigcup_{i \in I} U_i\) is open.

Proof of (ii) and (iii) (others left as exercises):

- (ii) This statement is true \textit{vacuously}; if it were false, then there would need to be an \(x \in \emptyset\) for which we could not find an appropriate \(B_r(x)\). No such \(x\) exists, so we are done.
Theorem

Let (X, d) be a metric space.

- i) X is always an open subset of itself.
- ii) The empty set \emptyset is always an open subset of X.
- iii) If $U_1, U_2, \ldots U_n$ are open subsets of X, then the finite intersection $U_1 \cap U_2 \cap \ldots \cap U_n$ is open.
- iv) If U_i is open for all $i \in I$, then the union $\bigcup_{i \in I} U_i$ is open.

Proof of (ii) and (iii) (others left as exercises):

- ii) This statement is true vacuously; if it were false, then there would need to be an $x \in \emptyset$ for which we could not find an appropriate $B_r(x)$. No such x exists, so we are done.

- iii) Let $x \in U_1 \cap \ldots \cap U_n$. Each U_i is open, so there are positive real numbers r_1, r_2, \ldots, r_n such that $B_{r_i}(x) \subseteq U_i$ for each i. Let $r = \min(r_1, \ldots, r_n)$. Then $B_r(x) \subseteq U_i$ for each i, so $B_r(x) \subseteq \bigcap_{i=1}^{n} U_i$. □
A topological space consists of a set X, together with a set τ whose elements are subsets of X, such that:

- $X \in \tau$ and $\emptyset \in \tau$
- If $U_1, U_2, \ldots, U_n \in \tau$, then $\bigcap_{i=1}^{n} U_i \in \tau$. (That is, τ is closed under finite intersections.)
- If $U_i \in \tau$ for all $i \in I$, then $\bigcup_{i \in I} U_i \in \tau$. (That is, τ is closed under arbitrary unions.)

The distinction between "finite union" and "arbitrary union" is only important if τ includes infinitely many subsets of X, which is only possible if X is an infinite set. The elements of X are called points, and the elements of τ are called open sets. The set τ is called a topology on X.

Dan Swenson, Black Hills State University
Introduction to Point-Set Topology
A topological space consists of a set X, together with a set τ whose elements are subsets of X, such that:

- $X \in \tau$ and $\emptyset \in \tau$
- If $U_1, U_2, \ldots, U_n \in \tau$, then $(\bigcap_{i=1}^{n} U_i) \in \tau$. (That is, τ is closed under finite intersections.)
- If $U_i \in \tau$ for all $i \in I$, then $(\bigcup_{i \in I} U_i) \in \tau$. (That is, τ is closed under arbitrary unions).

The distinction between “finite union” and “arbitrary union” is only important if τ includes infinitely many subsets of X, which is only possible if X is an infinite set.

The elements of X are called points, and the elements of τ are called open sets. The set τ is called a topology on X.
A topological space consists of a set X, together with a set τ whose elements are subsets of X, such that:

- $X \in \tau$ and $\emptyset \in \tau$
- If $U_1, U_2, \ldots, U_n \in \tau$, then $(\bigcap_{i=1}^{n} U_i) \in \tau$. (That is, τ is “closed under finite intersections”.)
A topological space consists of a set X, together with a set τ whose elements are subsets of X, such that:

- $X \in \tau$ and $\emptyset \in \tau$
- If $U_1, U_2, \ldots, U_n \in \tau$, then \(\bigcap_{i=1}^{n} U_i \in \tau \). (That is, τ is “closed under finite intersections”.)
- If $U_i \in \tau$ for all $i \in I$, then \(\bigcup_{i \in I} U_i \in \tau \). (That is, τ is closed under arbitrary unions).
A topological space consists of a set X, together with a set τ whose elements are subsets of X, such that:

- $X \in \tau$ and $\emptyset \in \tau$
- If $U_1, U_2, \ldots, U_n \in \tau$, then $(\bigcap_{i=1}^{n} U_i) \in \tau$. (That is, τ is “closed under finite intersections”.)
- If $U_i \in \tau$ for all $i \in I$, then $(\bigcup_{i \in I} U_i) \in \tau$. (That is, τ is closed under arbitrary unions).

The distinction between “finite union” and “arbitrary union” is only important if τ includes infinitely many subsets of X, which is only possible if X is an infinite set.
A topological space consists of a set \(X \), together with a set \(\tau \) whose elements are subsets of \(X \), such that:

- \(X \in \tau \) and \(\emptyset \in \tau \)
- If \(U_1, U_2, \ldots, U_n \in \tau \), then \(\left(\bigcap_{i=1}^{n} U_i \right) \in \tau \). (That is, \(\tau \) is “closed under finite intersections”.)
- If \(U_i \in \tau \) for all \(i \in I \), then \(\left(\bigcup_{i \in I} U_i \right) \in \tau \). (That is, \(\tau \) is closed under arbitrary unions).

The distinction between “finite union” and “arbitrary union” is only important if \(\tau \) includes infinitely many subsets of \(X \), which is only possible if \(X \) is an infinite set.

The elements of \(X \) are called points, and the elements of \(\tau \) are called open sets. The set \(\tau \) is called a topology on \(X \).
Examples

- Let X be any (nonempty) set, and let τ be the set of all subsets of X. Then (X, τ) is a topological space. (This τ is called the “discrete” topology on X.)
Examples

- Let X be any (nonempty) set, and let τ be the set of all subsets of X. Then (X, τ) is a topological space. (This τ is called the “discrete” topology on X.)

- Let $X = \mathbb{R}$ be the set of real numbers and let $\tau = \{A \subseteq X|A$ is a union of open intervals $(a, b)\}$. Then (X, τ) is a topological space. (The elements of τ are the usual “open subsets of the real line”, and τ is called the “euclidean” topology on \mathbb{R}.)
Examples

- Let X be any (nonempty) set, and let τ be the set of all subsets of X. Then (X, τ) is a topological space. (This τ is called the “discrete” topology on X.)

- Let $X = \mathbb{R}$ be the set of real numbers and let $\tau = \{ A \subseteq X | A$ is a union of open intervals $(a, b) \}$. Then (X, τ) is a topological space. (The elements of τ are the usual “open subsets of the real line”, and τ is called the “euclidean” topology on \mathbb{R}.)

- More generally, any metric space X is a topological space, where the open sets are unions of open balls.
Examples

- Let X be any (nonempty) set, and let τ be the set of all subsets of X. Then (X, τ) is a topological space. (This τ is called the “discrete” topology on X.)

- Let $X = \mathbb{R}$ be the set of real numbers and let $\tau = \{A \subseteq X | A$ is a union of open intervals $(a, b)\}$. Then (X, τ) is a topological space. (The elements of τ are the usual “open subsets of the real line”, and τ is called the “euclidean” topology on \mathbb{R}.)

- More generally, any metric space X is a topological space, where the open sets are unions of open balls. Thus topological spaces are a generalization of metric spaces.
More examples

Let $X = \{a, b\}$, and let $\tau = \{\emptyset, \{a\}, \{a, b\}\}$. Then (X, τ) is a topological space, called the Sierpinski space.
More examples

Let $X = \{a, b\}$, and let $\tau = \{\emptyset, \{a\}, \{a, b\}\}$. Then (X, τ) is a topological space, called the Sierpinski space.

Let X be any set, and let $\tau = \{\emptyset, X\}$. Then (X, τ) is a topological space. This τ is called the indiscrete topology on X.

Dan Swenson, Black Hills State University
Introduction to Point-Set Topology
More examples

- Let $X = \{a, b\}$, and let $\tau = \{\emptyset, \{a\}, \{a, b\}\}$. Then (X, τ) is a topological space, called the Sierpinski space.

- Let X be any set, and let $\tau = \{\emptyset, X\}$. Then (X, τ) is a topological space. This τ is called the indiscrete topology on X.

- Let \mathbb{Z} be the set of integers. Is the set τ of all infinite subsets of \mathbb{Z} a topology on \mathbb{Z}?
More examples

- Let $X = \{a, b\}$, and let $\tau = \{\emptyset, \{a\}, \{a, b\}\}$. Then (X, τ) is a topological space, called the Sierpinski space.

- Let X be any set, and let $\tau = \{\emptyset, X\}$. Then (X, τ) is a topological space. This τ is called the indiscrete topology on X.

- Let \mathbb{Z} be the set of integers. Is the set τ of all infinite subsets of \mathbb{Z} a topology on \mathbb{Z}? What if we add the empty set \emptyset to τ?
More examples

- Let $X = \{a, b\}$, and let $\tau = \{\emptyset, \{a\}, \{a, b\}\}$. Then (X, τ) is a topological space, called the Sierpinski space.

- Let X be any set, and let $\tau = \{\emptyset, X\}$. Then (X, τ) is a topological space. This τ is called the indiscrete topology on X.

- Let \mathbb{Z} be the set of integers. Is the set τ of all infinite subsets of \mathbb{Z} a topology on \mathbb{Z}? What if we add the empty set \emptyset to τ?

- Let \mathbb{R} be the set of real numbers. Let τ be the set of unions of half-open intervals $[a, b)$. Is τ a topology on \mathbb{R}?
More examples

- Let $X = \{a, b\}$, and let $\tau = \{\emptyset, \{a\}, \{a, b\}\}$. Then (X, τ) is a topological space, called the Sierpinski space.

- Let X be any set, and let $\tau = \{\emptyset, X\}$. Then (X, τ) is a topological space. This τ is called the indiscrete topology on X.

- Let \mathbb{Z} be the set of integers. Is the set τ of all infinite subsets of \mathbb{Z} a topology on \mathbb{Z}? No What if we add the empty set \emptyset to τ? Still no

- Let \mathbb{R} be the set of real numbers. Let τ be the set of unions of half-open intervals $[a, b)$. Is τ a topology on \mathbb{R}? Yes
Definition

Let \((X, \tau)\) be a topological space. As we said, the elements of \(\tau\) are subsets of \(X\), called open sets.
Definition

Let (X, τ) be a topological space. As we said, the elements of τ are subsets of X, called open sets. A subset A of X is called closed if its complement $X - A$ is open.
Definition

Let \((X, \tau)\) be a topological space. As we said, the elements of \(\tau\) are subsets of \(X\), called open sets. A subset \(A\) of \(X\) is called closed if its complement \(X - A\) is open.

For example, consider the usual euclidean topology on \(\mathbb{R}\). Is the interval \([a, b]\) a closed set?
Definition

Let (X, τ) be a topological space. As we said, the elements of τ are subsets of X, called open sets. A subset A of X is called closed if its complement $X - A$ is open.

For example, consider the usual euclidean topology on \mathbb{R}. Is the interval $[a, b]$ a closed set? Yes: its complement is $(-\infty, a) \cup (b, \infty)$, which is an open set in this topology: it is a union of open intervals.
Definition

Let \((X, \tau)\) be a topological space. As we said, the elements of \(\tau\) are subsets of \(X\), called open sets. A subset \(A\) of \(X\) is called closed if its complement \(X - A\) is open.

For example, consider the usual euclidean topology on \(\mathbb{R}\). Is the interval \([a, b]\) a closed set? Yes: its complement is \((-\infty, a) \cup (b, \infty)\), which is an open set in this topology: it is a union of open intervals.

We said that for any topological space \(X\), the sets \(\emptyset\) and \(X\) are open.
Definition

Let \((X, \tau)\) be a topological space. As we said, the elements of \(\tau\) are subsets of \(X\), called open sets. A subset \(A\) of \(X\) is called closed if its complement \(X - A\) is open.

For example, consider the usual euclidean topology on \(\mathbb{R}\). Is the interval \([a, b]\) a closed set? Yes: its complement is \((-\infty, a) \cup (b, \infty)\), which is an open set in this topology: it is a union of open intervals.

We said that for any topological space \(X\), the sets \(\emptyset\) and \(X\) are open. But they are also closed!
Definition

Let \((X, \tau)\) be a topological space. As we said, the elements of \(\tau\) are subsets of \(X\), called **open sets**. A subset \(A\) of \(X\) is called **closed** if its complement \(X - A\) is open.

For example, consider the usual euclidean topology on \(\mathbb{R}\). Is the interval \([a, b]\) a closed set? Yes: its complement is \((-\infty, a) \cup (b, \infty)\), which is an open set in this topology: it is a union of open intervals.

We said that for any topological space \(X\), the sets \(\emptyset\) and \(X\) are open. But they are also closed! Sets that are both open and closed are sometimes called “clopen” sets. :)
Definition

Let \((X, \tau)\) be a topological space. As we said, the elements of \(\tau\) are subsets of \(X\), called open sets. A subset \(A\) of \(X\) is called closed if its complement \(X - A\) is open.

For example, consider the usual euclidean topology on \(\mathbb{R}\). Is the interval \([a, b]\) a closed set? Yes: its complement is \((-\infty, a) \cup (b, \infty)\), which is an open set in this topology: it is a union of open intervals.

We said that for any topological space \(X\), the sets \(\emptyset\) and \(X\) are open. But they are also closed! Sets that are both open and closed are sometimes called “clopen” sets. :) Exercise: prove that in a discrete topological space \(X\), every subset of \(X\) is clopen.
We define a topological space by describing the set X and the open sets that make up its topology τ.
We define a topological space by describing the set X and the open sets that make up its topology τ. However, we could instead specify all of the closed sets in the space, since any open set will be the complement of a closed set.
We define a topological space by describing the set X and the open sets that make up its topology τ. However, we could instead specify all of the closed sets in the space, since any open set will be the complement of a closed set.

- As we said, in any topological space X, the sets \emptyset and X are closed sets.
We define a topological space by describing the set X and the open sets that make up its topology τ. However, we could instead specify all of the closed sets in the space, since any open set will be the complement of a closed set.

- As we said, in any topological space X, the sets \emptyset and X are closed sets.

- A finite union of closed sets is a closed set.
We define a topological space by describing the set X and the open sets that make up its topology τ. However, we could instead specify all of the closed sets in the space, since any open set will be the complement of a closed set.

- As we said, in any topological space X, the sets \emptyset and X are closed sets.

- A finite union of closed sets is a closed set.

- An arbitrary intersection of closed sets is a closed set.
We define a topological space by describing the set X and the open sets that make up its topology τ. However, we could instead specify all of the closed sets in the space, since any open set will be the complement of a closed set.

- As we said, in any topological space X, the sets \emptyset and X are closed sets.

- A finite union of closed sets is a closed set.

- An arbitrary intersection of closed sets is a closed set.

If we had wanted, we could have defined the term “topological space” to be a set X along with a set σ of closed sets, satisfying the properties above.
Example

Again, let \mathbb{Z} be the set of integers. This time we’ll define a topology on \mathbb{Z} by specifying the closed sets:
Example

Again, let \(\mathbb{Z} \) be the set of integers. This time we’ll define a topology on \(\mathbb{Z} \) by specifying the closed sets: a subset \(A \) of \(\mathbb{Z} \) will be closed if \(A \) is finite, or if \(A = \mathbb{Z} \).
Example

Again, let \mathbb{Z} be the set of integers. This time we’ll define a topology on \mathbb{Z} by specifying the closed sets: a subset A of \mathbb{Z} will be closed if A is finite, or if $A = \mathbb{Z}$.

Note that a finite union of finite sets is finite, and an arbitrary intersection of finite sets is finite.
Example

Again, let \mathbb{Z} be the set of integers. This time we’ll define a topology on \mathbb{Z} by specifying the closed sets: a subset A of \mathbb{Z} will be closed if A is finite, or if $A = \mathbb{Z}$.

Note that a finite union of finite sets is finite, and an arbitrary intersection of finite sets is finite.

The open sets in this topological space are called cofinite, since their complements are finite.
Example

Again, let \mathbb{Z} be the set of integers. This time we’ll define a topology on \mathbb{Z} by specifying the closed sets: a subset A of \mathbb{Z} will be closed if A is finite, or if $A = \mathbb{Z}$.

Note that a finite union of finite sets is finite, and an arbitrary intersection of finite sets is finite.

The open sets in this topological space are called cofinite, since their complements are finite. This topology is called the cofinite topology on \mathbb{Z}, and in fact we can define the cofinite topology on any set, not just \mathbb{Z}.
Historically, topological spaces have been very important in many areas (abstract algebra, real analysis), and these topological spaces are not always metric spaces.
Historically, topological spaces have been very important in many areas (abstract algebra, real analysis), and these topological spaces are not always metric spaces.

Two examples of extremely important topological spaces include the Zariski topology, which allows one to describe very important properties of rings, and the Stone space, which allows one to study properties of Boolean algebras.
Historically, topological spaces have been very important in many areas (abstract algebra, real analysis), and these topological spaces are not always metric spaces.

Two examples of extremely important topological spaces include the Zariski topology, which allows one to describe very important properties of rings, and the Stone space, which allows one to study properties of Boolean algebras. Neither of these spaces is a metric space.
Historically, topological spaces have been very important in many areas (abstract algebra, real analysis), and these topological spaces are not always metric spaces.

Two examples of extremely important topological spaces include the Zariski topology, which allows one to describe very important properties of rings, and the Stone space, which allows one to study properties of Boolean algebras. Neither of these spaces is a metric space.

These days the Zariski topology is especially important, since it is the starting point for the entire area of Algebraic Geometry, which is a very active research area right now.
Historically, topological spaces have been very important in many areas (abstract algebra, real analysis), and these topological spaces are not always metric spaces.

Two examples of extremely important topological spaces include the Zariski topology, which allows one to describe very important properties of rings, and the Stone space, which allows one to study properties of Boolean algebras. Neither of these spaces is a metric space.

These days the Zariski topology is especially important, since it is the starting point for the entire area of Algebraic Geometry, which is a very active research area right now. We won’t describe these spaces here, but if you go to graduate school in math, it is very likely that you will encounter the Zariski topology!
Definition

Let X and Y be topological spaces. A function $f : X \to Y$ is continuous if:

The notation here doesn’t necessarily mean that f has an inverse. Here $f^{-1}(U)$ is a set:

$$f^{-1}(U) = \{ x \in X | f(x) \in U \}.$$

Thus $f^{-1}(U)$ is the set of points that are mapped into U by f.

Dan Swenson, Black Hills State University

Introduction to Point-Set Topology
Definition

Let X and Y be topological spaces. A function $f : X \rightarrow Y$ is **continuous** if:

- for each open subset U of Y, the preimage $f^{-1}(U)$ is an open subset of X.

The notation here doesn't necessarily mean that f has an inverse. Here $f^{-1}(U)$ is a set: $f^{-1}(U) = \{ x \in X | f(x) \in U \}$. Thus $f^{-1}(U)$ is the set of points that are mapped into U by f.
Definition

Let X and Y be topological spaces. A function $f : X \rightarrow Y$ is **continuous** if:

1. for each open subset U of Y, the preimage $f^{-1}(U)$ is an open subset of X.

The notation here doesn’t necessarily mean that f has an inverse. Here $f^{-1}(U)$ is a set:
Definition

Let X and Y be topological spaces. A function $f : X \to Y$ is continuous if:

- for each open subset U of Y, the preimage $f^{-1}(U)$ is an open subset of X.

The notation here doesn’t necessarily mean that f has an inverse. Here $f^{-1}(U)$ is a set:

$$f^{-1}(U) = \{ x \in X | f(x) \in U \}.$$
Definition

Let X and Y be topological spaces. A function $f : X \rightarrow Y$ is continuous if:

- for each open subset U of Y, the preimage $f^{-1}(U)$ is an open subset of X.

The notation here doesn’t necessarily mean that f has an inverse. Here $f^{-1}(U)$ is a set:

$$f^{-1}(U) = \{ x \in X | f(x) \in U \}.$$

Thus $f^{-1}(U)$ is the set of points that are mapped into U by f.
Example: Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x) = x^3$. Then

$\{x \in \mathbb{R} \mid x^3 \in (-8, 8)\} = \{x \in \mathbb{R} \mid -2 < x < 2\} = (-2, 2)$.

Exercise: Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x) = \sqrt{x} + 1$. Find $f^{-1}(3, \infty)$.
Example: Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^3$. Then

$$f^{-1}(-8, 8) =$$
Example: Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^3$. Then

$$f^{-1}(-8, 8) = (-2, 2),$$
Example: Let \(f : \mathbb{R} \to \mathbb{R} \) be defined by \(f(x) = x^3 \). Then

\[
f^{-1}(-8, 8) = (-2, 2),
\]

since any \(x \) in the interval \((-2, 2)\) will be sent into the interval \((-8, 8)\), and no other \(x \)-values will land in \((-8, 8)\).
Example: Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^3$. Then

$$f^{-1}(-8, 8) = (-2, 2),$$

since any x in the interval $(-2, 2)$ will be sent into the interval $(-8, 8)$, and no other x-values will land in $(-8, 8)$.

Formally:

$$f^{-1}(-8, 8) = \{ x \in \mathbb{R} | f(x) \in (-8, 8) \}$$
Example: Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^3$. Then

$$f^{-1}(-8, 8) = (-2, 2),$$

since any x in the interval $(-2, 2)$ will be sent into the interval $(-8, 8)$, and no other x-values will land in $(-8, 8)$.

Formally:

$$f^{-1}(-8, 8) = \{x \in \mathbb{R} | f(x) \in (-8, 8)\} = \{x \in \mathbb{R} | x^3 \in (-8, 8)\} = (-2, 2).$$
Example: Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^3$. Then

$$f^{-1}(-8, 8) = (-2, 2),$$

since any x in the interval $(-2, 2)$ will be sent into the interval $(-8, 8)$, and no other x-values will land in $(-8, 8)$.

Formally:

$$f^{-1}(-8, 8) = \{x \in \mathbb{R} | f(x) \in (-8, 8)\} = \{x \in \mathbb{R} | x^3 \in (-8, 8)\}$$

$$= \{x | -8 < x^3 < 8\}$$
Example: Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^3$. Then

$$f^{-1}(-8, 8) = (-2, 2),$$

since any x in the interval $(-2, 2)$ will be sent into the interval $(-8, 8)$, and no other x-values will land in $(-8, 8)$.

Formally:

$$f^{-1}(-8, 8) = \{x \in \mathbb{R} | f(x) \in (-8, 8)\} = \{x \in \mathbb{R} | x^3 \in (-8, 8)\}$$

$$= \{x | -8 < x^3 < 8\} = \{x | -2 < x < 2\}$$
Example: Let \(f : \mathbb{R} \to \mathbb{R} \) be defined by \(f(x) = x^3 \). Then

\[
 f^{-1}(-8, 8) = (-2, 2),
\]

since any \(x \) in the interval \((-2, 2)\) will be sent into the interval \((-8, 8)\), and no other \(x \)-values will land in \((-8, 8)\).

Formally:

\[
 f^{-1}(-8, 8) = \{ x \in \mathbb{R} | f(x) \in (-8, 8) \} = \{ x \in \mathbb{R} | x^3 \in (-8, 8) \}
\]

\[
 = \{ x | -8 < x^3 < 8 \} = \{ x | -2 < x < 2 \}
\]

\[
 = (-2, 2).
\]
Example: Let \(f : \mathbb{R} \rightarrow \mathbb{R} \) be defined by \(f(x) = x^3 \). Then

\[
f^{-1}(-8, 8) = (-2, 2),
\]

since any \(x \) in the interval \((-2, 2)\) will be sent into the interval \((-8, 8)\), and no other \(x \)-values will land in \((-8, 8)\).

Formally:

\[
f^{-1}(-8, 8) = \{ x \in \mathbb{R} | f(x) \in (-8, 8) \} = \{ x \in \mathbb{R} | x^3 \in (-8, 8) \}
\]

\[
= \{ x | -8 < x^3 < 8 \} = \{ x | -2 < x < 2 \}
\]

\[
= (-2, 2).
\]

Exercise: Let \(f : \mathbb{R} \rightarrow \mathbb{R} \) be given by \(f(x) = \sqrt{x} + 1 \). Find \(f^{-1}(3, \infty) \).
The idea is that a continuous function $f : \mathbb{R} \to \mathbb{R}$ can take open sets to open sets, like $f(x) = x^3$,
The idea is that a continuous function \(f : \mathbb{R} \rightarrow \mathbb{R} \) can take open sets to open sets, like \(f(x) = x^3 \), and it can take open sets to non-open sets, like
The idea is that a continuous function \(f : \mathbb{R} \rightarrow \mathbb{R} \) can take open sets to open sets, like \(f(x) = x^3 \), and it can take open sets to non-open sets, like \(f(x) = x^2 \), which takes \((-\infty, \infty)\) to \([0, \infty)\),
The idea is that a continuous function $f : \mathbb{R} \to \mathbb{R}$ can take open sets to open sets, like $f(x) = x^3$, and it can take open sets to non-open sets, like $f(x) = x^2$, which takes $(-\infty, \infty)$ to $[0, \infty)$, but it will never take a non-open set to an open set, as we’ll see on the next slide.
Theorem

Let $f : \mathbb{R} \to \mathbb{R}$ be any function. Then f is continuous if and only if, given any open subset U of \mathbb{R}, the preimage $f^{-1}(U)$ is also open.
Theorem

Let $f : \mathbb{R} \to \mathbb{R}$ be any function. Then f is continuous if and only if, given any open subset U of \mathbb{R}, the preimage $f^{-1}(U)$ is also open.

Proof: See supplement.
Theorem

Let \(f : \mathbb{R} \to \mathbb{R} \) be any function. Then \(f \) is continuous if and only if, given any open subset \(U \) of \(\mathbb{R} \), the preimage \(f^{-1}(U) \) is also open.

Proof: See supplement.

This definition using open sets allows us to define continuity for functions between any two topological spaces, not just metric spaces.
Example: Let X be the set $\{1, 2\}$. We can define (at least) two different topologies on this set:
Example: Let X be the set $\{1, 2\}$. We can define (at least) two different topologies on this set:

Let τ be the discrete topology, $\tau = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$,
Example: Let X be the set $\{1, 2\}$. We can define (at least) two different topologies on this set:

Let τ be the discrete topology, $\tau = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$, and let σ be the indiscrete topology, $\sigma = \{\emptyset, \{1, 2\}\}$.

Let $f : (X, \tau) \to (X, \sigma)$ be the identity function, $f(x) = x$. Is f continuous?

We need to check whether the preimage of an open set in (X, σ) is always an open set in (X, τ).

The only open sets in (X, σ) are \emptyset and $X = \{1, 2\}$.

Clearly, $f^{-1}(\emptyset) = \emptyset$, which is open.

Also, $f^{-1}(X) = X$ (exercise), so f is continuous.

Now let $g : (X, \sigma) \to (X, \tau)$ be defined by $g(x) = x$. Then g is not continuous.
Example: Let X be the set $\{1, 2\}$. We can define (at least) two different topologies on this set: Let τ be the discrete topology, $\tau = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$, and let σ be the indiscrete topology, $\sigma = \{\emptyset, \{1, 2\}\}$.

Let $f : (X, \tau) \to (X, \sigma)$ be the identity function, $f(x) = x$. Is f continuous?
Example: Let \(X \) be the set \(\{1, 2\} \). We can define (at least) two different topologies on this set:

Let \(\tau \) be the discrete topology, \(\tau = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\} \), and let \(\sigma \) be the indiscrete topology, \(\sigma = \{\emptyset, \{1, 2\}\} \).

Let \(f : (X, \tau) \to (X, \sigma) \) be the identity function, \(f(x) = x \). Is \(f \) continuous?

We need to check whether the preimage of an open set in \((X, \sigma) \) is always an open set in \((X, \tau) \).
Example: Let X be the set $\{1, 2\}$. We can define (at least) two different topologies on this set:
Let τ be the discrete topology, $\tau = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$, and let σ be the indiscrete topology, $\sigma = \{\emptyset, \{1, 2\}\}$.

Let $f : (X, \tau) \to (X, \sigma)$ be the identity function, $f(x) = x$. Is f continuous?
We need to check whether the preimage of an open set in (X, σ) is always an open set in (X, τ). The only open sets in (X, σ) are \emptyset and $X = \{1, 2\}$.

Example: Let X be the set $\{1, 2\}$. We can define (at least) two different topologies on this set:
Let τ be the discrete topology, $\tau = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$, and let σ be the indiscrete topology, $\sigma = \{\emptyset, \{1, 2\}\}$.

Let $f : (X, \tau) \to (X, \sigma)$ be the identity function, $f(x) = x$. Is f continuous?
We need to check whether the preimage of an open set in (X, σ) is always an open set in (X, τ). The only open sets in (X, σ) are \emptyset and $X = \{1, 2\}$.
Clearly, $f^{-1}(\emptyset) = \emptyset$, which is open.
Example: Let \(X \) be the set \(\{1, 2\} \). We can define (at least) two different topologies on this set:
Let \(\tau \) be the discrete topology, \(\tau = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\} \), and let \(\sigma \) be the indiscrete topology, \(\sigma = \{\emptyset, \{1, 2\}\} \).

Let \(f : (X, \tau) \rightarrow (X, \sigma) \) be the identity function, \(f(x) = x \). Is \(f \) continuous?
We need to check whether the preimage of an open set in \((X, \sigma) \) is always an open set in \((X, \tau) \). The only open sets in \((X, \sigma) \) are \(\emptyset \) and \(X = \{1, 2\} \).

Clearly, \(f^{-1}(\emptyset) = \emptyset \), which is open. Also, \(f^{-1}(X) = X \) (exercise), so \(f \) is continuous.
Example: Let X be the set $\{1, 2\}$. We can define (at least) two different topologies on this set:
Let τ be the discrete topology, $\tau = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}$, and let σ be the indiscrete topology, $\sigma = \{\emptyset, \{1, 2\}\}$.

Let $f : (X, \tau) \to (X, \sigma)$ be the identity function, $f(x) = x$. Is f continuous?
We need to check whether the preimage of an open set in (X, σ) is always an open set in (X, τ). The only open sets in (X, σ) are \emptyset and $X = \{1, 2\}$.
Clearly, $f^{-1}(\emptyset) = \emptyset$, which is open. Also, $f^{-1}(X) = X$ (exercise), so f is continuous.

Now let $g : (X, \sigma) \to (X, \tau)$ be defined by $g(x) = x$. Then g is not continuous.
As you might expect, the composition $f(g(x))$ is continuous if f and g are both continuous.
As you might expect, the composition $f(g(x))$ is continuous if f and g are both continuous.

This will basically mean that the collection of ALL topological spaces forms a category, but we won't discuss that today.
Much of the study of topological spaces comes down to deciding when one topological space is “the same” as another.
Much of the study of topological spaces comes down to deciding when one topological space is “the same” as another. There are many different definitions of “same” here: homologous, homotopy equivalent, diffeomorphic, . . . !
Much of the study of topological spaces comes down to deciding when one topological space is “the same” as another. There are many different definitions of “same” here: homologous, homotopy equivalent, diffeomorphic, . . . !

We will be content to define the idea of a homeomorphism between two topological spaces:
Much of the study of topological spaces comes down to deciding when one topological space is “the same” as another. There are many different definitions of “same” here: homologous, homotopy equivalent, diffeomorphic, . . . !

We will be content to define the idea of a homeomorphism between two topological spaces:

Definition

Let X and Y be two topological spaces. We say that X and Y are homeomorphic if there exist continuous functions $f : X \to Y$ and $g : Y \to X$ which are inverses of each other. The functions f and g are called homeomorphisms.
Much of the study of topological spaces comes down to deciding when one topological space is “the same” as another. There are many different definitions of “same” here: homologous, homotopy equivalent, diffeomorphic, . . . !

We will be content to define the idea of a homeomorphism between two topological spaces:

Definition

Let X and Y be two topological spaces. We say that X and Y are homeomorphic if there exist continuous functions $f : X \to Y$ and $g : Y \to X$ which are inverses of each other. The functions f and g are called homeomorphisms.

In the example on the last slide, we had $f : X \to Y$ and $g : Y \to X$, and they were inverse to each other: $(f(g(x)) = x$ and $g(f(y)) = y$.
Much of the study of topological spaces comes down to deciding when one topological space is “the same” as another. There are many different definitions of “same” here: homologous, homotopy equivalent, diffeomorphic, . . . !

We will be content to define the idea of a homeomorphism between two topological spaces:

Definition

Let X and Y be two topological spaces. We say that X and Y are **homeomorphic** if there exist continuous functions $f : X \to Y$ and $g : Y \to X$ which are inverses of each other. The functions f and g are called **homeomorphisms**.

In the example on the last slide, we had $f : X \to Y$ and $g : Y \to X$, and they were inverse to each other: $(f(g(x))) = x$ and $g(f(y)) = y$. However, g was not continuous, so these functions were not homeomorphisms.
Example: The intervals \((0, 1)\) and \((0, 2)\) are homeomorphic ("shaped the same").
Example: The intervals $(0, 1)$ and $(0, 2)$ are homeomorphic ("shaped the same").

Proof: We need continuous functions $f : (0, 1) \to (0, 2)$ and $g : (0, 2) \to (0, 1)$ which are inverse to each other.

Let $f(x) = 2x$, and $g(y) = \frac{y}{2}$.

Show that f and g are send these intervals to each other, that they are inverses, and that they are both continuous (Exercise).

Comment: A homeomorphism of topological spaces is very much like an isomorphism of groups (or rings, etc.).
Example: The intervals $(0, 1)$ and $(0, 2)$ are homeomorphic ("shaped the same").

Proof: We need continuous functions $f : (0, 1) \to (0, 2)$ and $g : (0, 2) \to (0, 1)$ which are inverse to each other. Let $f(x) = 2x$, and $g(y) = \frac{y}{2}$.
Example: The intervals $(0, 1)$ and $(0, 2)$ are homeomorphic ("shaped the same").

Proof: We need continuous functions $f : (0, 1) \to (0, 2)$ and $g : (0, 2) \to (0, 1)$ which are inverse to each other. Let $f(x) = 2x$, and $g(y) = \frac{y}{2}$. Show that f and g are send these intervals to each other, that they are inverses, and that they are both continuous (Exercise).
Example: The intervals $(0, 1)$ and $(0, 2)$ are homeomorphic ("shaped the same").
Proof: We need continuous functions $f : (0, 1) \to (0, 2)$ and $g : (0, 2) \to (0, 1)$ which are inverse to each other. Let $f(x) = 2x$, and $g(y) = \frac{y}{2}$. Show that f and g are send these intervals to each other, that they are inverses, and that they are both continuous (Exercise).

Comment: A homeomorphism of topological spaces is very much like an isomorphism of groups (or rings, etc.)