Explicit Computation of Cohomological Hodge Parameters for Calabi－Yau Threefolds in Type IIA and Type IIB String Theory

BLACK HILLS
Steven Williams and Dr．Parthasarathi Nag
state univer
School of Mathematics and Social Sciences，Black Hills State University

ntroduction／Physics Motivation

Throughout the twentieth century，two fundamental frameworks dominated our understanding of Physics：Einstein＇s General Theory of Relativity［GTR］and Quan tum Mechanics［QM］．From Quantum Mechanics or to be more precise Quantum Field Theory came the now famous Standard Model［SM］of Particle Physics，which describes all of the known elementary particles and three of the four known fun damental forces．The missing force，gravity，is described by General Theory of Relativity．A theory which describes all four fundamental forces，sometimes called a Grand Unified Theory＋GTR，has proven to be elusive；however，String Theory has emerged as a possible solution．In Type IIA and IIB String Theory，particles are described by strings residing in 10 dimensions：the four of Minkowski space－time and six dimensions of a Calabi－Yau manifold．Through an in－depth study of the works of Witten，Candelas，Katz，Kodaira，Hirzebruch and others，we have explic－ itly computed the cohomological Hodge parameters used to describe two different six－dimensional Calabi－Yau manifolds producing a framework in which Einstein＇s Field Equations in a vacuum are true，and where three and four generations of particles are predicted，thus combining General Theory of Relativity with the Stan－ dard Model．

Brief Description of Type IIA－IIB String Theory
Σ is a Riemann surface generated by a closed string traveling through Minkowski Space－Time and let X be a Calabi－Yau［CY］threefold．Let $\phi^{i}: \Sigma \rightarrow X, i=1,2,3$ such that $\phi^{i}=\phi^{i}(z, \bar{z})$ and $\phi^{\bar{i}}=\overline{\phi^{i}(z, \bar{z})}, \bar{i}=1,2,3$ describes the bosons．By applying supersymmetry，there exists a fermion for every boson such that for ϕ^{i} there is ψ_{+}^{i} and ψ_{-}^{i} where + represents the quantum spin number $+1 / 2$ and－rep－ resents the spin number $-1 / 2$ ．Similarly，for $\phi^{\bar{i}}$ there is $\psi_{+}^{\bar{i}}$ and $\psi_{-}^{\bar{i}}$ ．For the sake of this discussion，let $X=\mathbb{C}^{3}$ which is a trivial CY manifold．Then the action
 ric on X ．The Supersymmetric transformations are given by $\delta \phi^{i}=i \alpha_{-} \psi_{+}^{i}+i \alpha_{+} \psi_{-}^{i}$ $\delta \phi^{\bar{i}}=i \alpha_{-}^{\prime} \psi_{+}^{\bar{i}}+i \alpha_{+}^{\prime} \psi_{-}^{\bar{i}}, \delta \psi_{+}^{i}=-\alpha_{-}^{\prime} \frac{\partial \phi^{i}}{\partial z}, \delta \psi_{+}^{\bar{i}}=-\alpha_{-} \frac{\partial \phi^{\bar{i}}}{\partial z}, \delta \psi_{-}^{i}=-\alpha_{+}^{\prime}+\frac{\partial \phi^{i}}{\partial \bar{z}}, \delta \psi_{-}^{\bar{i}}=-\alpha_{+} \frac{\partial \bar{b}^{\bar{i}}}{\partial \bar{z}}$. The parameters $\alpha_{+}, \alpha_{-}, \alpha_{+}^{\prime}, \alpha_{-}^{\prime}$ are called Grassmann or Fermionic parameters， Hence this theory is called $N=2$ or $N=(2,2)$ string theory．A－Twist：$\alpha_{-}=\alpha_{+}^{\prime}=0$ and $\alpha_{+}=\alpha_{-}^{\prime}=\alpha$ ．Thus，the A－twist results in $\psi_{+}^{i}: \Sigma \rightarrow K_{\Sigma}^{1 / 2} \otimes \phi^{*}\left(T_{(1,0)} X\right)$ be－ coming $\chi^{i}: \Sigma \rightarrow \phi^{*}\left(T_{(1,0)} X\right), \psi_{+}^{i}: \Sigma \rightarrow K_{\Sigma}^{1 / 2} \otimes \phi^{*}\left(T_{(0,1)} X\right)$ becoming $\psi_{z}^{i}: \Sigma \rightarrow$ $K_{\Sigma} \otimes \phi^{*}\left(T_{(0,1)} X\right), \psi_{-}^{i}: \Sigma \rightarrow \bar{K}_{\Sigma}^{1 / 2} \otimes \phi^{*}\left(T_{(1,0)} X\right)$ becoming $\psi_{\bar{z}}^{i}: \Sigma \rightarrow \bar{K}_{\Sigma} \otimes \phi^{*}\left(T_{(1,0)} X\right)$ ， $\psi_{-}^{\bar{i}}: \Sigma \rightarrow \bar{K}_{\Sigma}^{1 / 2} \otimes \phi^{*}\left(T_{(0,1)} X\right)$ becoming $\psi^{\bar{i}}: \Sigma \rightarrow \phi^{*}\left(T_{(0,1)} X\right)$ B－Twist：$\alpha_{+}=\alpha_{-}=0$ and $\alpha_{+}^{\prime}=\alpha_{-}^{\prime}=\alpha$ ．Thus，the B－twist results in ψ_{+}^{i} becoming $\psi_{z}^{i}, \psi_{-}^{i}$ becoming $\psi_{\bar{z}}^{i}, \psi_{+}^{\bar{i}}$ becoming $\psi_{1}^{\bar{i}}, \psi_{-}^{\bar{i}}$ becoming $\psi_{2}^{\bar{i}}$ ．where K_{Σ} is the canonical line bundle and $K_{\Sigma} \otimes K_{5}$ ．
Observables of Type IIA model on X are equivalent to observables of Type IIB model on X^{*} where X^{*} is the Mirror manifold．

Mathematical Preliminaries

$\mathbb{C P}^{n}$ is an n－dimensional complex projective space defined as $\mathbb{C P}^{n}=\left\{z=\left(z_{0}\right.\right.$ ： $\left.\left.z_{n}\right) \in \mathbb{C}^{n+1} \mid z \neq \overline{0}\right\} / \sim$ where $\overline{0}=(0,0, \ldots 0)$ ．The equivalence rela－ tion，\sim ，is defined as $z \sim z^{\prime}$ iff $\forall \lambda \in \mathbb{C} \backslash\{0\}, z^{\prime}=\lambda z$ ． \mathbb{P}^{n} can be described as a union of open sets $U_{i}=\left\{\left(z_{0}, \ldots, z_{i}, \ldots, z_{n}\right) \in \mathbb{C P}^{n} \mid z_{i} \neq 0\right\} \forall 0 \leq i \leq n$ Let $\phi_{i}: U_{i} \rightarrow \mathbb{C}^{n}$ defined by $\phi_{i}\left(z_{0}, \ldots, z_{i}, \ldots, z_{n}\right)=\left(\frac{z_{n}}{z_{i}}, \frac{z_{1}}{z_{i}}, \ldots, \hat{1}, \ldots, \ldots \frac{z_{n}}{z_{i}}\right)$ ．Then， $\left(U_{i}, \phi_{i}\right)$ is a chart and $\left\{\left(U_{i}, \phi_{i}\right): i=0,1, \ldots, n\right\}$ is an atlas．$X=\left\{\left(z_{0}: z_{1}: \ldots\right.\right.$ ：
$\left.\left.z_{n}\right) \in \mathbb{C P}^{n} \mid F\left(z_{0}, z_{1}, \ldots, z_{n}\right)=0\right\}$ is a sub－manifold of $\mathbb{C P}^{n}$ defined by the ho－ $\left.\left.z_{n}\right) \in \mathbb{C P}^{n} \mid F\left(z_{0}, z_{1}, \ldots, z_{n}\right)=0\right\}$ is a sub－manifold of $\mathbb{C P}^{n}$ defined by the ho－
mogeneous polynomial F of degree $d . \operatorname{dim}(X)=n-1$ ．X is a compact sub－ mogeneous polynomial F of degree d ． $\operatorname{dim}(X)=n-1$ ．X is a compact sub－
manifold of $\mathbb{C P}^{n}$ ．Every compact sub－manifold of $\mathbb{C P}^{n}$ is an algebraic manifold．$T_{2} X$ manifold of $\mathbb{C P}^{n}$ ．Every compact sub－manifold of $\mathbb{C P}^{n}$ is an algebraic manifold．$T_{z} X$
is the is the tangent space to X where $B_{T_{2} X}=\left\{\frac{\partial}{\partial z_{2}}, \frac{\partial}{\partial z_{1}}, \ldots, \frac{\partial}{\partial z_{n}}, \frac{\partial}{\partial z_{n}}, \frac{\partial}{\partial z_{1}}, \ldots, \frac{\partial}{\partial z_{n}}\right\} . T_{z_{1}}^{*} X$ is the
dual space of the tangent space where $B_{T_{3}}=\left\{d z_{0}, d z_{1}, d z_{z}, d \overline{z_{0}}, d \overline{z_{1}}, d \overline{z_{k}}\right\}$ dual space of the tangent space where $B_{T_{z}^{*} X}=\left\{d z_{0}, d z_{1}, \ldots, d z_{n}, d z_{0}, d z_{1}, \ldots, d z_{n}\right\}$ $B_{\Lambda^{n} T_{z, 1,0)}^{*} X}=\left\{d z_{0} \wedge \ldots \wedge d z_{n}\right\}$ ，where $\wedge^{n} T_{z,(1,0)}^{*} X$ is the $n^{\text {th }}$ exterior product vector space．Let $\Omega^{(p, q)}(X)$ be a complex vector space of differential form of bi－degree （ p, q ）such that locally，$\forall \omega \in \Omega^{(p, q)}(X), \omega=f^{i_{1}, \ldots, i_{i} \bar{i}_{1} \ldots . . \bar{j}_{q}} d z_{i_{1}} \wedge \cdots d z_{i_{1}} \wedge d \bar{z}_{\bar{i}_{1}} \wedge \cdots d \bar{z}_{\overline{\bar{I}_{1}}}$ with exterior derivative $d=d z^{i} \wedge \partial_{i}+d \bar{z}_{\bar{i}} \wedge \partial_{\bar{i}}$ ．A metric can be defined as $g: T^{*} X \times T^{*} X \rightarrow \mathbb{R}$ ，where $g=g^{i j} d \bar{z}_{\bar{i}} \otimes z_{j}+g^{i \bar{j}} d z_{i} \otimes d \bar{z}_{\bar{j}}$ ．By quotienting， we obtain $\omega=2 i g^{i \bar{j}} d z_{i} \wedge d \bar{z}_{\bar{j}} \in \Omega^{(1,1)}(X)$ ．If $d \omega=0$ ，then X is called a Käh－ ler manifold and ω is called a Kähler form and is said to be closed．Further－ more，$d^{2}=0, \partial^{2}=0$ ，and $\bar{\partial}^{2}=0$ ．Also，note that $\mathbb{C P}^{n}$ is Kähler．By Kodaira， any sub－manifold of a Kähler manifold is also Kähler．$\Omega^{(p, q)}(X) \xrightarrow{\bar{o}} \Omega^{(p, q+1)}(X)$ ． Similarly，$\Omega^{(p, q)}(X) \xrightarrow{\partial} \Omega^{(p+1, q)}(X)$ ．The cochain complex of the space of (p, q)－ forms is $\Omega^{(p, 0)}(X) \xrightarrow{\bar{d}} \Omega^{(p, 1)}(X) \xrightarrow{\bar{d}} \ldots \xrightarrow{\bar{d}} \Omega^{(p, q)}(X) \xrightarrow{\bar{d}} \ldots \xrightarrow{\bar{d}} \Omega^{(p, n)}(X) \xrightarrow{\bar{d}} 0$ ．The Dolbeault Cohomology，$H_{\bar{\partial}}^{p, q}(X)$ ，is defined to be the following quotient space： $H_{\bar{\partial}}^{p, q}(X)=\operatorname{ker}\left(\bar{\partial}: \Omega^{(p, q)}(X) \rightarrow \Omega^{(p, q+1)}(X)\right) / \operatorname{im}\left(\bar{\partial}: \Omega^{(p, q-1)}(X) \rightarrow \Omega^{(p, q)}(X)\right)$ ．A Hodge parameter is defined as $h^{p, q}(X)=\operatorname{dim}_{\mathbb{C}}\left(H_{\bar{\partial}}^{p, q}(X)\right)$

Calabi－Yau Manifold

Definition 1：A complex n－dimensional compact Kähler manifold X whose canoni－ cal bundle $\bigwedge^{n} T_{(1,0)}^{*} X$ has a nowhere vanishing holomorphic section，that is，$s: X \rightarrow$ $\bigwedge^{n} T_{1,0)}^{*} X$ locally given by $s=f\left(z_{1}, \ldots, z_{n}\right) d z_{1} \wedge \cdots \wedge d z_{n}$ is non－vanishing section is called Calabi－Yau manifold
Remark：The first Chern class defined by $c_{1}(X)=c_{1}\left(\bigwedge^{n} T_{(1,0)}^{*} X\right)=[Z(s)]$ where $Z(s)=\{z \in X: s(z)=0\}$ where s is the non－vanishing section．Hence $c_{1}(X)=0$ ． Definition 2：A complex，compact n－dimensional Kähler manifold X is Calabi－Yau if $c_{1}(X)=0$ and $h^{0,1}(X)=h^{0,2}(X)=\cdots=h^{0, n-1}(X)=0$
Remark：$c_{1}(X)=0$ implies Ricci curvature $=0$ which is Einstein＇s field equations of GTR in vacuum．
Remark：Calabi－Yau manifolds come in pairs $\left(X, X^{*}\right)$ where X^{*} is called Mirror manifold such that $h^{1,1}(X)=h^{1,2}\left(X^{*}\right)$ and $h^{1,2}(X)=h^{1,1}\left(X^{*}\right.$ Remark：$\chi(X)=2\left(h^{1,1}-h^{2,1}\right)$ is the Euler Characteristic of X and $\chi\left(X^{*}\right)=-\chi(X)$

Cohomological Properties of Hodge Parameters $h^{p, q}(X$

1．$h^{p, q}(X)=h^{q, p}(X)$（Dolbeault Property）2．$h^{p, q}(X)=h^{n-p, n-q}(X)$（Serre Dua

 ity）THe holomorphic Euler－Poincaré characteristic $\chi^{p}(X)=\sum_{a=0}^{n}(-1)^{q} h^{p, q}(X)$ The generating function of $\chi^{p}(X)$ is denoted by：$\chi_{y}(X)=\chi(y, X)=\sum_{p \geq 0} \chi^{p}(X) y^{p}$ ． From Hirzebruch，the $\chi_{y}(X)$ is the coefficient of ξ^{N} in the ξ Taylor expansion of the function：$f(N, y, \xi)=\frac{\left(1+(1-\xi)^{N+1}\right.}{(1-\xi))^{N+1}} \cdot \frac{1-(1-\xi)^{m}}{1+(1-\xi m} . f(N, y, \xi)=\sum_{p>0} f(N, p, \xi) y^{p}$ $\chi^{0}(X)=f(N, 0, \xi)=\frac{1}{1-\xi}-(1-\xi)^{m-1}$ and $\chi^{(}(X)=f(N, 1, \xi)=(N+1)(1-(1-$ $\left.\xi)^{m}\right)-\frac{1}{1-\xi}+(1-\xi)^{2}$
$c_{1}(X)=0$ for a hyper－surface $X \subset \mathbb{C P}^{n}$ can be reformulated as $d=n+1$ where d is the degree of the homogeneous polynomial $F\left(z_{0}\right.$,
$X \hookrightarrow \mathbb{C P}_{1}^{n_{1}} \times \cdots \mathbb{C P}_{m}^{n_{m}}$ then f_{1}, \ldots, f_{k} are homogeneous polynomials restricted to $\mathbb{C P}_{r}^{n_{r}}$ of degrees $d_{1}^{r} \ldots d_{k}^{r}$ then $c_{1}(X)=0$ of the complete intersection CY is given by $\sum_{a=1}^{k} d_{a}^{r}=n_{r}+1$ for $r=1, \ldots, m$ ．

Calabi－Yau Quintic Threefold

$X=\left\{\left(z_{0}: z_{1}: z_{2}: z_{3}: z_{4}\right) \in \mathbb{C P}^{4}: z_{0}^{5}+z_{1}^{5}+z_{2}^{5}+z_{3}^{5}+z_{4}^{5}-5 \psi z_{0} z_{1} z_{2} z_{3} z_{4}=0\right\}$

Tian－Yau CICY Threefold

 $\left.0, y_{0}^{3}+y_{1}^{3}+y_{2}^{3}+y_{3}^{3}=0, x_{0} y_{0}+x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}=0\right\}$Cohomological Parameters $h^{0,0}, h^{3,0}, h^{1,1}, h^{1,2}$

Abstract

For the CY quintic threefold，$\chi^{0}(X)=1-\frac{(m-1)(m-2)(m-3)(m-4)}{24}$ then $h^{0,0}(X)=$ 1 and $h^{0,3}(X)=\frac{(m-1)(m-2)(m-3)(m-4)}{24} . \quad \chi^{1}(X)=-5\left(\frac{(m(m-1)(m-2)(m-3)}{24}\right)-1+$ $(2 m-1)(2 m-2)(2 m-3)(2 m-4)$ ．For $m=5$ ，then $\chi^{1}(X)=-1+101=-h^{1,1}+h^{1,2}$ ．Hence $h^{0,0}(X)=1, h^{3,0}(X)=1, h^{1,1}(X)=1, h^{2,1}(X)=101$ $G_{X}=\left\langle g_{1}, g_{2}\right\rangle$ where $g_{1} \cdot\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{0}, \xi x_{1}, x_{2}, x_{3}, \xi^{4} x_{4}\right)$ and g_{2} $\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{0}, x_{1}, \xi^{2} x_{2}, \xi^{3} x_{3}, x_{4}\right)$ ，where $\xi^{5} \stackrel{ }{=} 1$ Then，$G_{X} \times X \rightarrow X$ is free hence number of generations of fermions is $|\chi(Y)| / 2=\frac{|\chi(X)|}{2\left|G_{X}\right|}=4$ ，where $Y=X / G_{X}$ ． For the CICY threefold，$\chi(X)=\left[\sum_{r, s, t=1}^{2}\left(\frac{1}{3}\left[\delta^{r, s, t}\left(n_{r}+1\right)-\sum_{a=1}^{3} d_{a}^{r} d_{a}^{s} d_{a}^{t}\right]\right) x_{r} x_{s} x_{t}\right.$ $\left.\bigwedge_{b=1}^{3}\left(\sum_{p=1}^{2} d_{b}^{p} x_{p}\right)\right]_{\text {top }}=-18$ where $n_{1}=n_{2}=3, d_{1}^{1}=d_{2}^{1}=1, d_{2}^{1}=d_{3}^{2}=1, d_{3}^{1}=d_{2}^{2}=0$ ． where there are 40 free parameters for degree 3 polynomials in 4 variables．Then 16 from linear automorphism which does not change the shape of X and 1 is the overall scaling，hence $h^{1,2}=40-16-1=23$ and $h^{1,1}(X)=14$ from Euler Charac teristic．$G_{X} \cong \mathbb{Z}_{3}$ has a free action on X ．hence number of generations of fermions is $|\chi(Y)| / 2=\frac{|\chi(X)|}{2\left|G_{X}\right|}=3$ ，where $Y=X / G_{X}$

Acknowledgements

would like to thank the NSF and Dr．Brianna Mount for the opportunity to research this summer The work was funded partially by NSF award 2150517.

References

