Explicit Computation of Cohomological Hodge Parameters for
Calabi-Yau Threefolds in Type lIA and Type IIB String Theory

Introduction / Physics Motivation

Throughout the twentieth century, two fundamental frameworks dominated our
understanding of Physics: Einstein’s General Theory of Relativity [GTR] and Quan-
tum Mechanics [QM]. From Quantum Mechanics or to be more precise Quantum
Field Theory came the now famous Standard Model [SM| of Particle Physics, which
describes all of the known elementary particles and three of the four known fun-
damental forces. The missing force, gravity, is described by General Theory of
Relativity. A theory which describes all four fundamental forces, sometimes called
a Grand Unified Theory + GTR, has proven to be elusive; however, String Theory
has emerged as a possible solution. In Type l|A and |IB String Theory, particles are
described by strings residing in 10 dimensions: the four of Minkowski space-time
and six dimensions of a Calabi-Yau manifold. Through an in-depth study of the
works of Witten, Candelas, Katz, Kodaira, Hirzebruch and others, we have explic-
itly computed the cohomological Hodge parameters used to describe two different
six-dimensional Calabi-Yau manifolds producing a framework in which Einstein’s
Field Equations in a vacuum are true, and where three and four generations of

particles are predicted, thus combining General Theory of Relativity with the Stan-
dard Model.
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Mathematical Preliminaries

> 1s a Riemann surface generated by a closed string traveling through Minkowski
Space-Time and let X be a Calabi-Yau [CY] threefold. Let ¢ : 3 — X,i = 1,2,3
such that ¢ = ¢'(2,z) and ¢' = ¢(z,%z),7 = 1,2,3 describes the bosons. By
applying supersymmetry, there exists a fermion for every boson such that for ¢
there is ¢". and ¢" where + represents the quantum spin number +1/2 and - rep-
resents the spin number —1/2. Similarly, for ¢' there is 4" and ¢" . For the sake
of this discussio.n,_.let X =C vvhich is a trivial CY manifold. Then the action
= 2t fz 5955 %f%f | %ﬁj%ﬁz) | ng]W -, 197 iag_g where g;= Is the hermitian met-
ric on X. The Supersymmetric transformations are given by §¢' = ia_), +ia ",

(5¢Z zo/_zp++m+¢@_, 5¢+ —o/_%qj , 5¢+ —oz_%f, ot = —a;%@ (WZ_ — —oz+%qu

The parameters ay,a_,a/,,a’ are called Grassmann or Fermionic parameters.

Hence this theoryis called N =2 or N = (2, 2) string theory. A-Twist: a_ = o/, =0
and a; = o = a. Thus, the A-twist results in ¢’ : 3 — K;ﬁ ® ¢* (11 X) be-
coming x' : ¥ — ¢*(Tj10X), w; Y — K;/Q ® ¢*(Tp1)X) becoming VY -
Ky @ ¢* (T X), L+ ¥ — K1/2®¢*(T(1,0)X) becoming ¢ : ¥ — Ky ® ¢*(T(1,0X),
D P Kl/2 ® ¢*(T(p1)X) becoming TAREED D ¢*(T(01)X) B-Twist: ap = a_ =0
and o/ = a_ = a. Thus, the B-twist results in ¢! becoming ¥, ¥ becoming
L 4" becoming wl, W’ becoming wQ where Ky is the canonical line bundle and
K;/Q ® KyY” ~ K,
Observables of Type IIA model on X are equivalent to observables of Type |IB
model on X* where X* is the Mirror manifold.
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CP" is an n-dimensional complex projective space defined as CP" = {z = (2 :

21 e oz € CVz £ O}/ ~ vvhereO—(O 0,...0). The equivalence rela-
hon ~, Is defined as z ~ 2" iff VA € C\{0}, 2/ = Az. CP" can be described
as a union of open sets U; = {(2p, ..., 2 ,-.-,Zn) c CP"z # 0} V0O <1 < n
let ¢, : U, — C" defined by Oi(20y ey Ziy ooey Zn) = (20,21,. ,1,...2). Then,

(U;, ¢;) is a chart and {(U;, ¢;) O,l,...,n} is an atlas. X = {(z0 1 21 ¢ ...
zn) € CP" | F(z0,21,...,2n) = O} is a sub-manifold of CP" defined by the ho-
mogeneous polynomial F' of degree d. dim(X) = n — 1. X is a compact sub-
manifold of CIP". Every compact sub-manifold of CP" is an algebraic manifold. T, X

s the tangent space to X where By x = { 0 0 0 9 0 ,a_} T X is the

0zp) 0z17 """ 0z, 0zy’ 071’
dual space of the tangent space where Br-x = {dz),dz, ..., dz,, dz, dz1, ..., dZ, }.

B 7o X = = {dz N ... Ndz,}, where \" T~ (10X Isthe n'" exterior product vector

space. Let Q(M( ) be 3 complex vector space of differential form of bi-degree
btz A - dz A dZg A - dZy
with exterior denvahve d = dz' A (’9 + dz: N\ 0. A metric can be defined as
g : T"X xT*X — R, where g = ”dz— ® z; + gidz @ dz;. By quotienting,
we obtain w = 2ig¥dz; A dz; € Qb 1>(X). f dw = 0, then >< is called a Kah-
ler manifold and w is called a Kahler form and Is said to be closed. Further-
more, d> = 0, 0° = 0, and 9 = 0. Also, note that CP" is Kahler. By Kodaira,
any sub-manifold of a Kahler manifold is also Kihler. QPo(x) & QPar(X).

Similarly, QP9(X) % QP+La(X). The cochain complex of the space of (p,q)-

forms is QPO (x) 4 orh(x) & % .4 aemix)y 4 0. The

4 qrax) &
Dolbeault Cohomology, Hg’q(X), is defined to be the following quotient space:
HY(X) = ker(d : QPI(X) — QParI(X))/im(9 : QP)(X) — QPI(X)). A
Hodge parameter is defined as h?(X) = dimc(H5"(X))
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Calabi-Yau Manifold

Definition 1: A complex n-dimensional compact Kdhler manifold X whose canoni-
cal bundle \" T(1¢X has a nowhere vanishing holomorph/c section, that is, s : X —

A" T ocally glven by s = f(z1,...,2,)dz1 N\ -+ A dz, IS hon-vanishing section is
Called balabz’ — Yau manifold

Remark: The first Chern class defined by ¢i(X) = ¢ (" T(’LO)X) = [Z(s)| where
Z(s)={z € X :s(z) =0} where s Is the non-vanishing section. Hence ¢;(X) = 0.
Definition 2: A complex, compact n-dimensional Kdhler manifold X is Calabi-Yau if
ci(X)=0and h"'(X)=h"(X)=---=h""H{X) =0

Remark: ¢ (X) = 0 implies Ricci curvature = 0 which is Einstein’s field equations of
GIR in vacuum.

Remark: Calabi-Yau manifolds come in pairs (X, X*) where X* is called Mirror
manifold such that AM(X) = A14(X*) and Y4 X) = VLX)

Remark: y(X) = 2(h't—h*!)is the Euler Characteristic of X and y(X*) = —x(X)
where X* is the mirror CY.
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Cohomological Properties of Hodge Parameters 1/4( X )

1. hP1(X) = h?P(X) (Dolbeault Property) 2. hP4(X) = A" P4 X) (Serre Dual-
ity)

THe holomorphic Euler-Poincaré characteristic x?(X) = > (=1)h4(X) The
generating function of x?(X) is denoted by: x,(X) = x(y, X) = >_ 5o X" (X)y?.
From Hirzebruch, the Xy(X) is the coefficient of £V in the & Taylor expansion of
tf:)e function: f(N,y, f) 11+ 1§><§1>+>y) | 11—l—y(<111€€>)m° fNy,€) = Dm0 FIN, 2, 8"
X (X) = f(N 0,€) = (1 —&mand x(X) = f(N,1,§) = (N+1)(1— (1 -
g)m) 1— g (1 _5)2m 1

c1(X) = 0 for a hyper-surface X C CP" can be reformulated as d = n + 1 where
d 1s the degree of the homogeneous polynomial F(zy, ..., z,).

X — CP{* x ---CP» then fi, ..., fr are homogeneous polynomials restricted to
CP;" of degrees df . .. d; then ¢;(X) = 0 of the complete intersection CY is given

by SF_dl =n,+1forr=1,...,m.

Calabi-Yau Quintic Threefold
X={(z:21:2:23:24) €CP*: 20 + 20+ 25 + 25 + 25 — Shzpz1292324 = 0}
Tian-Yau CICY Threefold

X ={(xo: 21 @23 :yg: W1 : Y Y3 € CP? x CP° - To+ x5 + 13 + x5 =
0,95 + yi + 5 + y3 = 0, zoyo + T1y1 + oy + z3ys = 0}

Cohomological Parameters 1"’ 13V pt:t o2

m— —2)(m—3)(m—4
(m—1)(m ;EL m=4) then WOO(X) =

5(m(m—1)(7;14—2)(m—3)) — 1+

X) —1 + 101 = —hM + AM2 Hence,

For the CY quintic threefold, y"(X) = 1
1 and A3(X) = (m—1>(m—2%£lm—3)<m—4). YH(X) =
((Qm—l)(Qm—Q)(Zm—S)(Zm 4) 1

5 For m = 5, then x*(
hojO(X) — 17 hB?O(X> o 17h1 1(X) o 17 h21( )

GX — <91792> where g1 - ($0,I17$2,ZE3,$4) — ($0,€$1,$2,$3,€4$4) and gs -
(w0, T1, T2, T3, T4) = (w0, 21, E°Ta, E33, 14), Where £ = 1 Then, GX x X — X Is

free hence number of generations of fermions is |x(Y)|/2 = ‘ = 4, where
Y = X/Gy.

For the CICY threefold, x(X) = [>,,,Gl6" (n, + 1) = 3, didid!))a,zszy -

a=1 "Ya~"a"a
A, 1(2  dxp)op = —18wWheren; =ny =3, di =dy=1,dy =d; = 1,dy = d5 = 0.
where there are 40 free parameters for degree 3 polynomials in 4 variables. Then,
16 from linear automorphism which does not change the shape of X and 1 is the
overall scaling, hence h'? = 40 — 16 — 1 = 23 and h'Y(X) = 14 from Euler Charac-
teristic. Gx = Zs has a free action on X, hence number of generations of fermions
is [x(Y)|/2 = |§<|< 1 _ =3, where Y = X/Gx.
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