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Introduction / Physics Motivation

Throughout the twentieth century, two fundamental frameworks dominated our

understanding of Physics: Einstein’s General Theory of Relativity [GTR] and Quan-

tum Mechanics [QM]. From Quantum Mechanics or to be more precise Quantum

Field Theory came the now famous Standard Model [SM] of Particle Physics, which

describes all of the known elementary particles and three of the four known fun-

damental forces. The missing force, gravity, is described by General Theory of

Relativity. A theory which describes all four fundamental forces, sometimes called

a Grand Unified Theory + GTR, has proven to be elusive; however, String Theory

has emerged as a possible solution. In Type IIA and IIB String Theory, particles are

described by strings residing in 10 dimensions: the four of Minkowski space-time

and six dimensions of a Calabi-Yau manifold. Through an in-depth study of the

works of Witten, Candelas, Katz, Kodaira, Hirzebruch and others, we have explic-

itly computed the cohomological Hodge parameters used to describe two different

six-dimensional Calabi-Yau manifolds producing a framework in which Einstein’s

Field Equations in a vacuum are true, and where three and four generations of

particles are predicted, thus combining General Theory of Relativity with the Stan-

dard Model.

Brief Description of Type IIA-IIB String Theory

Σ is a Riemann surface generated by a closed string traveling through Minkowski
Space-Time and let X be a Calabi-Yau [CY] threefold. Let φi : Σ → X, i = 1, 2, 3
such that φi = φi(z, z) and φi = φi(z, z), i = 1, 2, 3 describes the bosons. By
applying supersymmetry, there exists a fermion for every boson such that for φi

there is ψi+ and ψ
i
− where + represents the quantum spin number +1/2 and - rep-

resents the spin number −1/2. Similarly, for φi there is ψi+ and ψi−. For the sake
of this discussion, let X = C3 which is a trivial CY manifold. Then the action
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The parameters α+, α−, α

′
+, α

′
− are called Grassmann or Fermionic parameters.

Hence this theory is calledN = 2 orN = (2, 2) string theory. A-Twist: α− = α′
+ = 0

and α+ = α′
− = α. Thus, the A-twist results in ψi+ : Σ → K

1/2
Σ ⊗ φ∗(T(1,0)X) be-

coming χi : Σ → φ∗(T(1,0)X), ψi+ : Σ → K
1/2
Σ ⊗ φ∗(T(0,1)X) becoming ψiz : Σ →

KΣ ⊗φ∗(T(0,1)X), ψi− : Σ → K
1/2
Σ ⊗φ∗(T(1,0)X) becoming ψiz : Σ → KΣ ⊗φ∗(T(1,0)X),

ψi− : Σ → K
1/2
Σ ⊗ φ∗(T(0,1)X) becoming ψi : Σ → φ∗(T(0,1)X) B-Twist: α+ = α− = 0

and α′
+ = α′

− = α. Thus, the B-twist results in ψi+ becoming ψ
i
z, ψ

i
− becoming

ψiz, ψ
i
+ becoming ψ

i
1, ψ

i
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i
2. where KΣ is the canonical line bundle and

K
1/2
Σ ⊗K

1/2
Σ

∼= KΣ.
Observables of Type IIA model on X are equivalent to observables of Type IIB

model on X∗ where X∗ is the Mirror manifold.

Mathematical Preliminaries

CPn is an n-dimensional complex projective space defined as CPn = {z = (z0 :
z1 : ... : zn) ∈ Cn+1|z 6= 0}/ ∼ where 0 = (0, 0, ...0). The equivalence rela-
tion, ∼, is defined as z ∼ z′ iff ∀λ ∈ C\{0}, z′ = λz. CPn can be described
as a union of open sets Ui = {(z0, ..., zi, ..., zn) ∈ CPn|zi 6= 0} ∀ 0 ≤ i ≤ n.
Let φi : Ui → Cn defined by φi(z0, ..., zi, ..., zn) = (zozi ,

z1
zi
, ..., 1̂, ...znzi ). Then,

(Ui, φi) is a chart and {(Ui, φi) : i = 0, 1, ..., n} is an atlas. X = {(z0 : z1 : ... :
zn) ∈ CPn | F (z0, z1, ..., zn) = 0} is a sub-manifold of CPn defined by the ho-
mogeneous polynomial F of degree d. dim(X) = n − 1. X is a compact sub-
manifold ofCPn. Every compact sub-manifold ofCPn is an algebraic manifold. TzX
is the tangent space to X where BTzX =

{
∂
∂z0
, ∂
∂z1
, ..., ∂

∂zn
, ∂
∂z0
, ∂
∂z1
, ..., ∂

∂zn

}
. T ∗

zX is the

dual space of the tangent space where BT ∗
zX = {dz0, dz1, ..., dzn, dz0, dz1, ..., dzn}.

B∧n T ∗
z,(1,0)X

= {dz0 ∧ ... ∧ dzn}, where
∧n T ∗

z,(1,0)X is the nth exterior product vector

space. Let Ω(p,q)(X) be a complex vector space of differential form of bi-degree
(p, q) such that locally, ∀ ω ∈ Ω(p,q)(X), ω = f i1,...,ipi1...jqdzi1 ∧ · · · dzip ∧ dzi1 ∧ · · · dziq
with exterior derivative d = dzi ∧ ∂i + dzi ∧ ∂i. A metric can be defined as
g : T ∗X × T ∗X → R, where g = gijdzi ⊗ zj + gijdzi ⊗ dzj. By quotienting,

we obtain ω = 2igijdzi ∧ dzj ∈ Ω(1,1)(X). If dω = 0, then X is called a Käh-
ler manifold and ω is called a Kähler form and is said to be closed. Further-

more, d2 = 0, ∂2 = 0, and ∂2 = 0. Also, note that CPn is Kähler. By Kodaira,
any sub-manifold of a Kähler manifold is also Kähler. Ω(p,q)(X) ∂→ Ω(p,q+1)(X).
Similarly, Ω(p,q)(X) ∂→ Ω(p+1,q)(X). The cochain complex of the space of (p,q)-
forms is Ω(p,0)(X) ∂→ Ω(p,1)(X) ∂→ ...

∂→ Ω(p,q)(X) ∂→ ...
∂→ Ω(p,n)(X) ∂→ 0. The

Dolbeault Cohomology, Hp,q

∂
(X), is defined to be the following quotient space:

Hp,q

∂
(X) = ker(∂ : Ω(p,q)(X) → Ω(p,q+1)(X))/im(∂ : Ω(p,q−1)(X) → Ω(p,q)(X)). A

Hodge parameter is defined as hp,q(X) = dimC(Hp,q

∂
(X))

Calabi-Yau Manifold

Definition 1: A complex n-dimensional compact Kähler manifold X whose canoni-

cal bundle
∧n T ∗

(1,0)X has a nowhere vanishing holomorphic section, that is, s : X →∧n T ∗
(1,0)X locally given by s = f (z1, . . . , zn)dz1 ∧ · · · ∧ dzn is non-vanishing section is

called Calabi− Y au manifold

Remark: The first Chern class defined by c1(X) = c1(
∧n T ∗

(1,0)X) = [Z(s)] where
Z(s) = {z ∈ X : s(z) = 0} where s is the non-vanishing section. Hence c1(X) = 0.
Definition 2: A complex, compact n-dimensional Kähler manifold X is Calabi-Yau if

c1(X) = 0 and h0,1(X) = h0,2(X) = · · · = h0,n−1(X) = 0
Remark: c1(X) = 0 implies Ricci curvature = 0 which is Einstein’s field equations of

GTR in vacuum.

Remark: Calabi-Yau manifolds come in pairs (X,X∗) where X∗ is called Mirror

manifold such that h1,1(X) = h1,2(X∗) and h1,2(X) = h1,1(X∗)
Remark: χ(X) = 2(h1,1 −h2,1) is the Euler Characteristic ofX and χ(X∗) = −χ(X)
where X∗ is the mirror CY.

Cohomological Properties of Hodge Parameters hp,q(X)

1. hp,q(X) = hq,p(X) (Dolbeault Property) 2. hp,q(X) = hn−p,n−q(X) (Serre Dual-
ity)

THe holomorphic Euler-Poincaré characteristic χp(X) =
∑n

q=0 (−1)qhp,q(X) The
generating function of χp(X) is denoted by: χy(X) = χ(y,X) =

∑
p≥0χ

p(X)yp.
From Hirzebruch, the χy(X) is the coefficient of ξN in the ξ Taylor expansion of
the function: f (N, y, ξ) = (1+(1−ξ))N+!

(1−ξ)(1+y) · 1−(1−ξ)m
1+y(1−ξ)m. f (N, y, ξ) =

∑
p≥0 f (N, p, ξ)yp.

χ0(X) = f (N, 0, ξ) = 1
1−ξ − (1 − ξ)m−1 and χ1(X) = f (N, 1, ξ) = (N + 1)(1 − (1 −

ξ)m) − 1
1−ξ + (1 − ξ)2m−1

c1(X) = 0 for a hyper-surface X ⊂ CPn can be reformulated as d = n+ 1 where
d is the degree of the homogeneous polynomial F (z0, . . . , zn).
X ↪→ CPn1

1 × · · ·CPnmm then f1, ..., fk are homogeneous polynomials restricted to
CPnrr of degrees dr1 . . . drk then c1(X) = 0 of the complete intersection CY is given
by

∑k
a=1 d

r
a = nr + 1 for r = 1, . . . ,m.

Calabi-Yau Quintic Threefold

X = {(z0 : z1 : z2 : z3 : z4) ∈ CP4 : z5
0 + z5

1 + z5
2 + z5

3 + z5
4 − 5ψz0z1z2z3z4 = 0}

Tian-Yau CICYThreefold

X = {(x0 : x1 : x2 : x3 : y0 : y1 : y2 : y3) ∈ CP3 × CP3 : x3
0 + x3

1 + x3
2 + x3

3 =
0, y3

0 + y3
1 + y3

2 + y3
3 = 0, x0y0 + x1y1 + x2y2 + x3y3 = 0}

Cohomological Parameters h0,0, h3,0, h1,1, h1,2

For the CY quintic threefold, χ0(X) = 1 − (m−1)(m−2)(m−3)(m−4)
24 then h0,0(X) =

1 and h0,3(X) = (m−1)(m−2)(m−3)(m−4)
24 . χ1(X) = −5(m(m−1)(m−2)(m−3)

24 ) − 1 +
((2m−1)(2m−2)(2m−3)(2m−4)

24 . For m = 5, then χ1(X) = −1 + 101 = −h1,1 + h1,2. Hence,

h0,0(X) = 1, h3,0(X) = 1, h1,1(X) = 1, h2,1(X) = 101.
GX = 〈g1, g2〉 where g1 · (x0, x1, x2, x3, x4) = (x0, ξx1, x2, x3, ξ

4x4) and g2 ·
(x0, x1, x2, x3, x4) = (x0, x1, ξ

2x2, ξ
3x3, x4), where ξ5 = 1 Then, GX × X → X is

free hence number of generations of fermions is |χ(Y )|/2 = |χ(X)|
2|GX| = 4, where

Y = X/GX.

For the CICY threefold, χ(X) = [
∑2

r,s,t=1(1
3[δ

r,s,t(nr + 1) −
∑3

a=1 d
r
ad
s
ad
t
a])xrxsxt ·∧3

b=1(
∑2

p=1 d
p
bxp)]top = −18where n1 = n2 = 3, d1

1 = d1
2 = 1, d1

2 = d2
3 = 1, d1

3 = d2
2 = 0.

where there are 40 free parameters for degree 3 polynomials in 4 variables. Then,

16 from linear automorphism which does not change the shape of X and 1 is the

overall scaling, hence h1,2 = 40 − 16 − 1 = 23 and h1,1(X) = 14 from Euler Charac-
teristic. GX

∼= Z3 has a free action onX , hence number of generations of fermions
is |χ(Y )|/2 = |χ(X)|

2|GX| = 3, where Y = X/GX.

Acknowledgements

I would like to thank the NSF and Dr. Brianna Mount for the opportunity to research this summer.

The work was funded partially by NSF award 2150517.

References

Bouchard, V. (2007). Lectures on complex geometry, Calabi-Yau manifolds and toric geometry. Candelas, P., Lütken, C. A., amp; Schimmrigk, R. (1988). Complete Intersection

Calabi-Yau Manifolds (II). Nuclear Physics B, 306(1), 113–136. https://doi.org/10.1016/0550-3213(88)90173-3 Hubsch, T. (1994). Calabi-Yau Manifolds: A Bestiary for

Physicists. World Scientific. Jinzenji, M. (2018). Classical Mirror Symmetry. Springer. Katz, S. (2006). Enumerative Geometry and String Theory. American Mathematical

Society. Notes by Nicolaescu, L. (2005). Hodge Numbers of Complete Intersections. Witten, E. (1991). Mirror Manifolds and Topological Field Theory.

SD EPSCoR Research Experience for Undergraduates 2023 steven.williams@yellowjackets.bhsu.edu, p.nag@bhsu.edu

mailto:youremail@cs.toronto.edu

