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In 1988 Michael Atiyah published his “Topological Quantum Field Theory” paper in which he 

formulated TQFT into an axiomatic system. This formulation uses category theory as it 

describes TQFT as a functor between the cobordism category and the category of  R-modules. In 

this project, our goal is to explore the correspondence between the axioms of  the symmetric 

modular functor (constructed by Graeme Segal in the context of  conformal field theory in 

1989) with another well-known axiomatic system related to homology theory developed in 1952 

by mathematicians Samuel Eilenberg and Norman Steenrod in “Foundations of  Algebraic 

Topology” known as the homology functor. 

A category 𝐶 consists of  a collection 𝑂𝑏𝑗 𝐶 of  objects and a collection 𝑀𝑜𝑟(𝐶) of  morphisms 

such that morphism composition is associative and there exists identity morphisms. A functor 𝐹
between two categories 𝐶 &𝐶′ pairs each 𝑋 ∈ 𝑂𝑏𝑗(𝐶) with an object 𝐹 𝑋 ∈ 𝑂𝑏𝑗 𝐶′ and 

each 𝑓 ∈ 𝑀𝑜𝑟 𝐶 with a morphism 𝐹 𝑓 = 𝑓′ ∈ 𝑀𝑜𝑟 𝐶′ . It was noted by Atiyah that the 

axioms of  TQFT have marked similarity with the axioms of  homology theory in Algebraic 

Topology. We briefly describe these functors. For each 𝑞 ∈ ℤ+ the homology functor is denoted 

by 𝐻𝑞: 𝑇𝑜𝑝
(2) → 𝐴𝑏𝐺𝑟𝑝 and the TQFT functor is denoted by 𝜏𝑞: 𝑞𝐶𝑜𝑏 → 𝑉𝑒𝑐𝑡𝐾 where:

• 𝑇𝑜𝑝(2) is the category of  pairs of  topological spaces with morphisms that are 

continuous functions. 

• 𝐴𝑏𝐺𝑟𝑝 is the category of  abelian groups with morphisms that are homomorphisms.

• 𝑉𝑒𝑐𝑡𝐾 is the category of  vector spaces over a field K with morphisms that are 

isomorphisms. 

• 𝑞𝐶𝑜𝑏 is the category of  q-dimensional compact oriented topological manifolds with 

morphisms that are classes of  cobordisms which are (q+1) dimensional oriented 

topological manifolds with boundaries homeomorphic to the objects.

• Remark: 𝑞𝐶𝑜𝑏 and 𝑉𝑒𝑐𝑡𝐾 may be thought of  as symmetric monoidal categories. If  𝐶
is a category with an operation ∎ and objects  and C then the collection 

(𝐶,∎, 𝜂, 𝛼, 𝜆, 𝜌, 𝜏, 𝐼) is a symmetric monoidal category with the properties:

• 𝜂: 1 → 𝐶 with 𝐼 ∈ 1 is the neutral element and the only object in 1.

• ((𝐴∎𝐵)∎𝐶) ≅ (𝐴∎ 𝐵∎𝐶 ) given by the associator object 𝛼.

• 𝐼∎𝐴 ≅ 𝐴 & (𝐴∎𝐼) ≅ 𝐴 given by 𝜆 & 𝜌 respectively.

• 𝐴∎𝐵 ≅ 𝐵∎𝐴 given by 𝜏.
The Eilenberg-Steenrod axioms of  Homology theory are satisfied by the qth homology 

functor 𝐻𝑞 which associates each pair of  topological spaces 𝑋, 𝐴 ∈ 𝑂𝑏𝑗 𝑇𝑜𝑝 2 with an 

abelian group 𝐻𝑞 𝑋, 𝐴 ∈ 𝑂𝑏𝑗(𝐴𝑏𝐺𝑟𝑝) and each continuous function 𝑓 ∈ 𝑀𝑜𝑟(𝑇𝑜𝑝 2 )

with a homomorphism Hq f = 𝑓∗ ∈ 𝑀𝑜𝑟 𝐴𝑏𝐺𝑟𝑝 .

The Witten-Atiyah-Segal axioms of  TQFT are satisfied by the symmetrical modular functor 𝜏𝑞
which associates each topological manifold Σ ∈ 𝑂𝑏𝑗(𝑞𝐶𝑜𝑏) with a vector space 𝜏𝑞(Σ) ∈

𝑂𝑏𝑗(𝑉𝑒𝑐𝑡𝑘) and each cobordism 𝑀 ∈ 𝑀𝑜𝑟 𝑞𝐶𝑜𝑏 with a vector 𝜏𝑞(𝑀) ∈ 𝜏𝑞(𝜕𝑀) ∈

𝑂𝑏𝑗(𝑉𝑒𝑐𝑡𝐾).
Notations:

• ⊔ denotes a coproduct

• ⨁ denotes a direct product

• ⨂ denotes a tensor product

Introduction [Math Motivation]

E-S Axioms satisfied by 
𝐻𝑞

W-A-S Axioms satisfied by 
𝜏𝑞

The goals of  this project were pursued by means of  detailed 

analysis of  the works of  Ed Witten, Michael Atiyah and Graeme 

Segal in the fields of  Topological Quantum Field Theory and 

Conformal Field Theory, as well as the works of  Samuel Eilenberg 

and Norman Steenrod in the field of  Algebraic Topology. 

Additionally, we referred to various works from mathematicians, 

as listed in the references, in order to correctly construct a 

formulation for topics such as the qCob category, the definition 

of  a monoidal category, the definition of  a symmetric tensor 

category and more. Over the course of  the program, we 

constructed an informal paper which establishes a detailed 

formulation for the theories needed to understand the axiomatic 

systems at hand. When the axioms were established, we used them 

to see what theorems we could immediately derive, as well as 

direct comparison of  the axioms and their implications.

Methods

Physics Motivation
Suppose we have some path  𝛾: 𝑡0, 𝑡1 → 𝑀 that lies on a cobordism [spacetime] 𝑀 such that 𝛾 𝑡0 = 𝑎 & 𝛾 𝑡1 = 𝑏 with 𝑎, 𝑏 ∈ 𝑀. We say 𝛾 ∈ ℘

where ℘ is the Space of  paths. The action integral for 𝛾 is given by s γ = 𝑡0
𝑡1 𝐿 𝑡, 𝛾 𝑡 , 𝛾′ 𝑡 𝑑𝑡. In quantum mechanics we may compute the 

contribution of  any path 𝛾 ∈ ℘ by integrating the probability function over the path 𝛾 with respect to the space of  paths ℘

i.e., 𝛾∈℘ 𝑒
𝑖 𝑠[𝛾]

ℏ 𝑑℘. This is the famous Feynman path integral. Now, we want to compute the probability amplitude for a given field configuration to

evolve from a space Σ0 to a space Σ1. Suppose 𝑀 is a cobordism, denoted by 𝑀:Σ0 ⟹ Σ1, with boundary 𝜕𝑀 = Σ0⨆Σ1. Let A(Σ0) represent the 

initial fields “living” on a space Σ0. That is to say, A(Σ0) is the field configuration on Σ0. The Schrödinger interpretation states that the probability 

of  the state 𝜓𝑡 being observed in a field configuration A ∈A(Σ𝑡) is represented as 𝜓𝑡 𝐴 = መ𝐴𝑡 ∈ 𝑉𝑒𝑐𝑡𝐾 (usually some Hilbert space). The 

probability amplitude for a given field configuration 𝐴0 ∈A(Σ0) to evolve into 𝐴1 ∈A(Σ1) is given by መ𝐴1 𝑈𝑡 መ𝐴0 = 𝐴0
𝐴1 𝑒

𝑖 𝑠[𝐴]

ℏ 𝑑A(Σ) Hence, the 

Feynman path integral constructs the time evolution operator 𝑈𝑡 associated with the cobordism 𝑀. Hence, for each 𝐴𝑡 ∈A(Σ𝑡) we associate the 

space of  states [ መ𝐴𝑡 ∈ 𝜏𝑞 Σ𝑡 ∈ 𝑉𝑒𝑐𝑡𝐾] and for each 𝑀𝑡: Σ0 ⟹ Σ𝑡 we associate 𝑈𝑡 𝑀 = 𝜏𝑞(𝑀𝑡) ∈ 𝜏𝑞(𝜕𝑀𝑡). Therefore, QFT may be generalized 

as computing 𝜏𝑞 𝑀𝑡 = 𝑈𝑡 𝑀 where 𝜏𝑞(𝑀) is a topological invariant for the manifold 𝑀. However, this process often leads to an ill-defined 

integral. There are special cases that may be solved, and the three-dimensional case was computed and interpreted by Ed Witten as the partition 

function 𝜏𝑞,𝑘 𝑀 = 𝑍𝑘 𝑀 = 𝐴 𝑒
𝑖 𝑘 𝑠[𝐴]

ℏ 𝑑A. This is known as one of  the defining moments of  TQFT because this partition function is 

independent of  a metric. If  𝑔 is some metric, then 
𝛿

𝛿𝑔
𝑍𝑘 = 0.

Results

Conclusion
We found that the two axiomatic systems correlate in some ways while also representing different mathematical objects and leading to different outcomes. The 

role of  an axiomatic system is to provide a means for proving results in the field in the form of  theorems. Simply due to the difference of  categories, there 

must be some axioms which do not correlate. The obvious case would be the fourth axioms. The concept of  an exact sequence is very homological in nature 

and the gluing\cutting of  cobordisms is of  course unique to cobordisms. Thus, the fourth axioms do not compare. The following are a few interesting results 

that we noticed of  the W-A-S axioms:

• From the second W-A-S axiom, we may derive a formulation that exemplifies the covariant nature of  the 𝜏𝑞 functor. That is 𝑓: Σ0 → Σ1, 𝑔: Σ1 → Σ2 ∈

𝑀𝑜𝑟 𝑞𝐶𝑜𝑏 ⇒ 𝑓 ∘ 𝑔 ∗ = 𝑓∗ ∘ 𝑔∗: 𝜏𝑞 Σ0 → 𝜏𝑞 Σ2 . Notice the similarity between this formulation and E-S (ii).

• The following remark is a result of  W-A-S (iv). 𝜏𝑞 𝑀 ∈ 𝜏𝑞 Σ0⨆തΣ2 = 𝜏𝑞 Σ0 ⨂𝜏𝑞 തΣ2 = 𝜏𝑞 Σ0 ⨂𝜏𝑞 Σ2
∗. In the case where 𝑀 is obtained by the 

gluing of  𝑀′&𝑀′′ along the homeomorphism ℎ: Σ1 → Σ1, we have 𝜏𝑞 𝑀 ∈ 𝜏𝑞 𝜕 𝑀′ ⊔𝑀′′ = 𝜏𝑞 𝜕𝑀′ ⊔ 𝜕𝑀′′ = 𝜏𝑞 𝜕𝑀′ ⨂𝜏𝑞 𝜕𝑀′′ =

𝜏𝑞 Σ0 ⨂𝜏𝑞 Σ1
∗⨂𝜏𝑞 Σ1 ⨂𝜏𝑞 Σ2

∗ → 𝜏𝑞(Σ0)⨂𝜏𝑞 Σ2
∗.

• The third W-A-S axiom is very similar to E-S (iii). Consider the following: if  𝜕: Σ0 ⊔ Σ1 → 𝜕𝑀𝑖𝑛 ⊔ 𝜕𝑀𝑜𝑢𝑡 →
𝑖 𝜕𝑀 and 𝜕′: Σ′0 ⊔ Σ′1 → 𝜕𝑀′

𝑖𝑛 ⊔

𝜕𝑀′
𝑜𝑢𝑡 →

𝑖′ 𝜕𝑀′ ⇒ 𝑓𝑖𝜕 ∗(𝜏𝑞 Σ0 ⊔ Σ1 ) = 𝑖′𝜕 𝑓ȁ𝜕𝑀 ∗(𝜏𝑞 Σ0 ⊔ Σ1 ) ⇒ 𝑓𝜕∗ = 𝜕∗ 𝑓ȁ𝜕𝑀 ∗.

• It must be noted that the axiom W-A-S (vi) is what causes this system to be quantum in nature. The vector spaces associated with two topological 

manifolds may be combined as a tensor product just as two quantum states may be superimposed.

• We have the following result from W-A-S (vii). If  𝑀 is a (2+1) cobordism without boundary, then 𝜏𝑞 𝑀 ∈ 𝜏𝑞 𝜕𝑀 = 𝜏𝑞 𝜙 = 𝐾 which implies that 

𝜏𝑞(𝑀) ∈ 𝐾. 𝜏𝑞(𝑀) is a numerical invariant  for 𝑀 computed and interpreted by Ed Witten as 𝜏𝑞,𝑘 = 𝐴 𝑒
𝑖 𝑘 𝑐𝑠[𝐴]

ℏ 𝑑A where 𝑐𝑠 𝐴 =
1

4𝜋
𝑀 𝑇𝑟 𝐴 ∧ 𝑑𝐴 +

2

3
𝐴 ∧ 𝐴 ∧ 𝐴 𝑑(𝑉𝑜𝑙) where𝐴 ∈A is the field configuration or space of  fields.
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