
Examining the Chemical Environments of Underground Microbial Life Emily Ormé¹, Dr. Micheal Zehfus², Dr. Katrina Jensen² 1. Augustana University 2. Black Hills State University

INTRODUCTION

Figure 1: 800 level entry

- Microbial life has been discovered by scientists in the Sanford Underground Research Facility (SURF), located in Lead,
- We have investigated the bacteria's chemical environments through water sampling, biofilm extraction, rock, and solid samples.
- The chemical composition of water samples was continued. **ICP-MS** and **Atomic** Absorption were emphasized towards rock samples. This year, the **4850**, **800**, and **300** levels were sampled and explored.

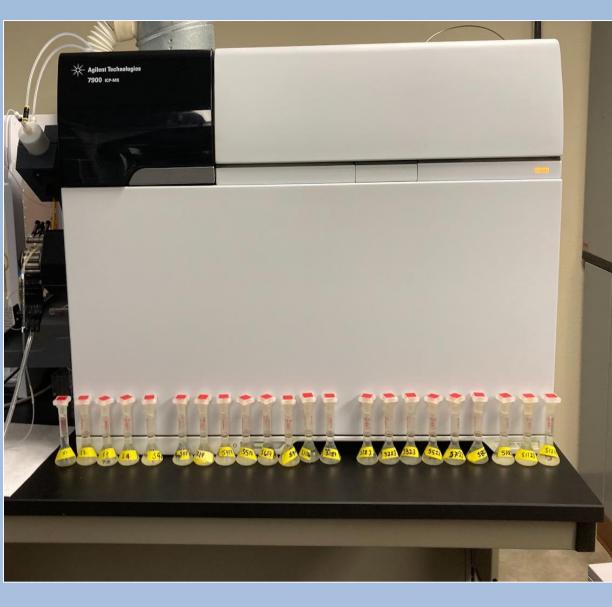


Figure 2: Potentiometric Titration for water sample Cl^{-} ion concentration

Figure 3: ICP-MS. 22 samples in front of instrument, ready to run.

Inductively Coupled Plasma Mass Spectrometry (ICP-MS) Methods:

A blank, a method blank, then samples were analyzed with 5% HNO3 wash in between each sample. After the last sample was taken a calibration curve was initiated ranging from 0.01ppb until 100ppb of solution. The ICP-MS was then cleaned thoroughly with HNO3 then air was let in to complete the cycle.

Connect with me! Scan for email

Figure 4: 6775 Freezer/Mill® Cryogenic Grinder froM the SpexSamplePrep Co.

LABORATORY METHODS

Chloride ion determination Methods (Potentiometric) titration for the precipitation of AgCl via electrochemical method. Electrodes were used and attached to a Cu wire and Ag wire. Both wires were thoroughly sanded before each different run. The salt bridge that was used was a string of NaHSO₄. ~ 50 mL of sample was used and combined with 3 mL of NaHSO_4 . The Cu wire was contained in a glass tube in $CuSO_4$ solution.

 $AgNO_3$ was used as the titrant. (See figure 2)

Reaction that occured $\operatorname{Ag^{+}_{(aq)}} + \operatorname{Cl^{-}_{(aq)}} \rightarrow \operatorname{AgCl}_{(s)}$ $Cu_{(s)} \mid Cu^{+2}_{(aq)} \mid Ag^{+2}_{(aq)} \mid Ag_{(s)}$

Measurement of alkalinity of the water samples Methods 0.01 M Standarized HCl was. Alkalinity was measured by titrating HCl into ~25mL of sample, initial pH was recorded and titration stopped at a ~ 2.5 pH electronic reading.

Rock Sampling and Analysis Methods The rock samples were grinded up using 6775 Freezer/Mill® Cryogenic Grinder from the SpexSamplePrep Co. and then digested using a variation of acids. The acids used were nitric (HNO3), perchloric (HClO4), hydrofluoric (HF), and hydrochloric (HCl) in order to draw out any chemical elements from solids for ICP-MS and further analysis. (Figure 4)

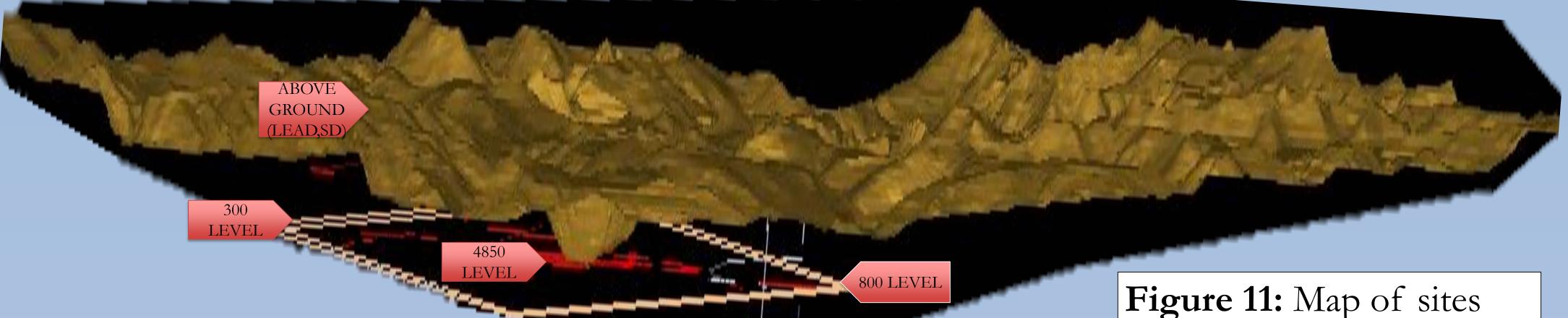
Figure 5: 300 level sampling

UNDERGROUND METHODS

Testing using specific Vernier probes and measurements were executed at each location.

If time was limited, the same measurements were made aboveground in the BHSU laboratory using re-calibrated probes. Measurements include: Conductivity, ammonia concentration, pH, temperature (both air and water),

dissolved oxygen, and pressure.


Samples were collected in a 250 mL - 1L plastic bottles to when necessary. A 50 mL plastic syringe was used to extract water from shallow pockets of waters in the mines and caves.

Chemical analysis on the water samples were done via atomic absorption spectroscopy (AAS – Perkin Elmer AAnalyst 300), titrations, Vernier Model probing measurements, and inductively coupled plasma mass spectrometry (ICP-MS – Agilent 7900) at Black Hills State University.

Solid samples were also collected and placed in a -90 C refrigerator until ICP-MS and further analysis was needed.

Designation	Location	Sample Type	Designation	Location	Sample Type	Designation	Location	Sample Typ
4850-1	End of Ledge (left)	Water	800-1	Cage Area	Water	300-1	Towards Pump room: Edge of cave	Water
1850-2	End of Ledge (right)	Water	800-2	Ditch by Ross sign; by magazine	Water	300-2	Towards Ross	Water
850-3	Across Smaller sample	Water	800-3	50-100ft from Site #2	Water	300-3	Pump room stagnant water: Edge of cave	Water
	(left)		800-4	Large biologist	Water	300-4	Edge of Cave	Water
850-4	Smaller sample (right)	Water	800-5	collection sample siteCollected by desk in	Water	300-5	In front of scavaged lab (Known as underground Pioneer)	Water
850-5	Thyothrx Falls outflow	Biofilm		2nd NASA site				
850-6	Thyothrx Falls outflow	Biofilm	800-6	Around 2nd NASA site	Rock	300-6	50 ft. from site 5	Water
			800-7	25 ft from site 6: Next	Water	300-7	Pipe condensation from walking back towards entry of cave	Condensation from Pipe
850-7	Thyothrx Falls outflow	Rock		to railing				
850-8	Thyothrx Falls end	Rock	800-8	Collected by site #4	Water	300-8	Collected close to samples #1 	Rock
4850-9	17 ledge (by locomotive travel area; beginning of trip)	Rock	800-9	Towards entry of cave	Rock Sample containing Cave Silver	300-9	Collected towards middle of walkway close to suspected clear H2O, black remnants were observed.	Water
			800-10	Close to scavenged Fungi Lab	Water			
4850-10	17 ledge (by locomotive	Solid Sample	800-11	50 ft from site #10	Water		Wall drippings towards entry of cave	Water
	travel area; beginning of trip)	collected by old Fe construction	800-12	7 paces from site #11	Water	300-11	Wall drippings 50-100ft from site #10	Water

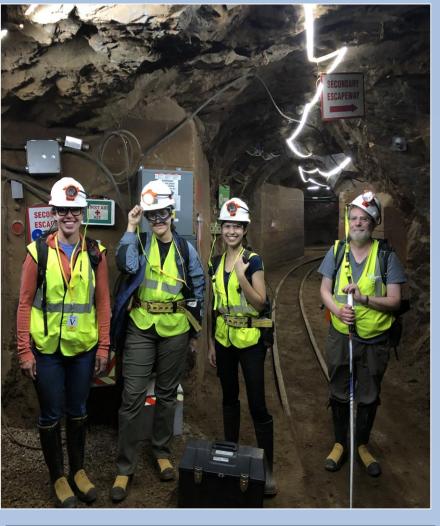


Figure 6: Group photo in front of 4850

In previous experiments from past REU students and their mentor, a trend that is seen is emphasis on water sampling via Inductively coupled plasma mass spectrometry (ICP-MS), titrations, and Flame Atomic Absorption (AA). This year, the REU chemistry and biology groups decided to investigate more solid samples which had biofilm or microbiological traces living in the surfaces of many rock samples. Using acid digestion, the rock samples allowed for an approachable method of understanding the chemical characteristics in which the bacteria live in underground. These prepped samples allowed for ICP-MS analysis to be observed. With the help of ICP-MS, trace elements in the rock samples can be further analyzed while assisting further research in the biological world. Overall, a lot of the work done this summer was insightful in practicing analytical chemistry. The work done this summer was a continuation, however, a lot of the data storage from previous years lacked in sufficient information which lagged the overall research timeline this summer. The experience going down at SURF was helpful in understanding what kind of environment houses the microbial life underground.

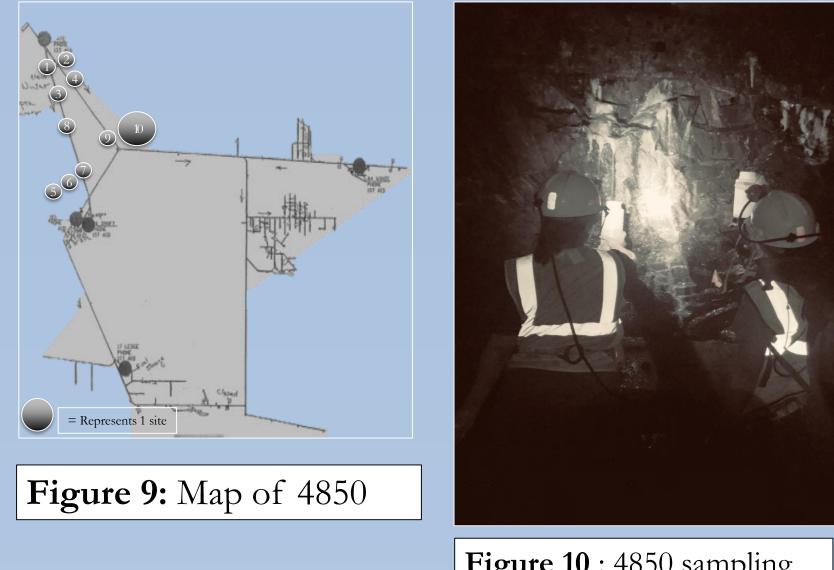

SAMPLING LOCATIONS

Figure 7: Map of 300

Figure 8: Map of 800

CONCLUSION

Sanford
Underground
Research Facility

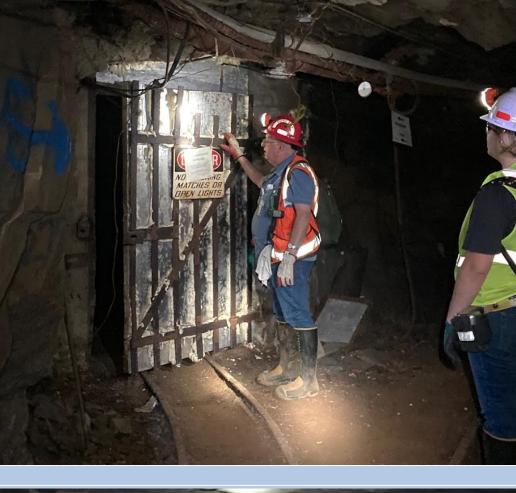


Figure 13, 14, & 15: (Top, Middle, bottom) 800 level entry, 4850 entry, & 300 level entry

> Figure 16 & **17:** (Top to bottom) 300 level sampling

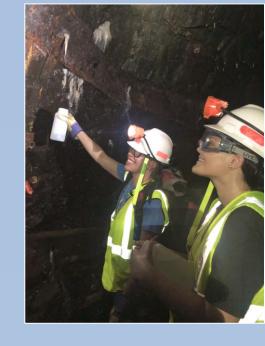
REFERENCES

Baird, C.; Cann, M. The Chemistry of Natural Waters. In Environmental chemistry; Freeman: New York, NY, 2012.

Kegley, S. E.; Andrews, J. The Chemistry of Water; University Science Books: Sausalito, CA, 1997.

Science | Sanford Lab Homestake Visitor Center, Lead SD http://sanfordlabhomestake.com/science (accessed Jul 21, 2021).

Smith. L, et. al. Laboratory Notebooks and Poster Presentations from past REU students. (Augustana University, South Dakota University, etc.) Summer 2017-Summer 2019 Harris. D.C. Quantitative Chemical Analysis. (8th edition) W.H. Freeman & Co. New York , NY. 2010..


ACKNOWLEDGEMENTS

I would like to thank Tom Regan and all of the SURF staff for making the trips at SURF accessible. . A big thank you to the NSF REU Grant Award No. 1560474 for making this possible. Thank you to the Davis-Bahcall program for introducing me to more research opportunities after graduation. Another thank you to Hasti Asrari, Dr. Dave Bruggeman, Dr. Hyunsuk Choi, Mrs. Oxana Gorbatenko, and my mentor, Dr. Katrina Jensen for assisting me throughout this summer while also making me a better scientist. Finally like to thank Dr. Amy and Dan Asunskis and Dr. Abigail Domagall who helped me with the ICP-MS and characterization of several rock samples.

Figure 10 : 4850 sampling

Figure 12: Davis Campus clean room entry

