Low Background Studies of Pb – Free Solder Using ICP-MS

²Donna R. Zehner, ¹Austin D. Williamson, ¹Amy Asunskis

Introduction

Inductively Coupled Plasma Mass Spectrometry (ICP-MS), was used to look for radioactive isotopes Uranium-238 and Thorium-232 in two lead-free Solder pastes used for electronics built for ultra-low background in rare-event searches.

Uranium and Thorium were examined for their decay-chain that causes a bulk of y-ray, alpha-particle, and neutron-induced backgrounds.

The ICP-MS, a sensitive multielement detection instrument, was used to determine these trace elements within the Solder.

ICP-MS

ICP-MS:

- a sensitive multielement detection instrument.
- useful in determining ultratrace amounts of specific elements in the sample.
- works by up-taking a sample into a spray chamber via a nebulizer
- This allows small droplets to pass into the plasma while large droplets flow into the waste.

Nebulizer creates an aerosol spray

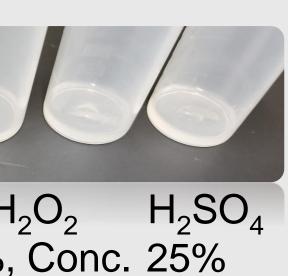
Spray Chamber removes larger aerosol droplets

- Once in the plasma the droplets are vaporized and turned into atoms and then dry ions.
- lons then enter the quadrupole mass spectrometer.

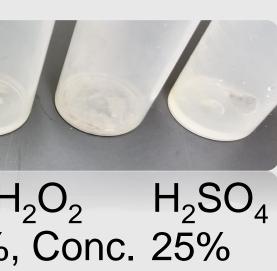
ICP-MS Data

Results for the digestion of solder pastes

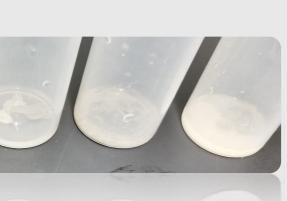
	Conc. (ppm)			
Solder ID		Pb	Th	U
NC-SMQ80	Avg	200	-0.00031	0.00027
Indium5.7LT	Avg	26.7	0.0073	0.0011


Unique Sample Preparation

Low background analysis includes several unique samples that do not have well established digestion procedures. Before analysis the sample must be tested to determine a suitable digestion protocol. A variety of digestions were analyzed using different temperatures, acid concentrations, and acid combinations.


	rial 1	
Digestant	Concentrat	ior
0	Cond	
		25
H ₂ SO ₄		
		9
H_2SO_4	HCI	
onc. Conc.	25%, Conc. 2	5%
H_2SO_4 onc. Conc.	HCI 25%, Conc. 2	5%
H ₂ SO ₄ onc. Conc. as 30, but the ot	25%, Conc. 2	
	25%, Conc. 2	
	25%, Conc. 2	
	$\frac{\text{Digestant}}{\text{HNO}_3}$ HCI H_2O_2 H_2SO_4	$\begin{array}{c} \underline{\text{Digestant}}\\ HNO_{3}\\ HCI\\ H_{2}O_{2}\\ H_{2}SO_{4}\\\end{array}$

1-Black Hills State University, 2-Alverno College

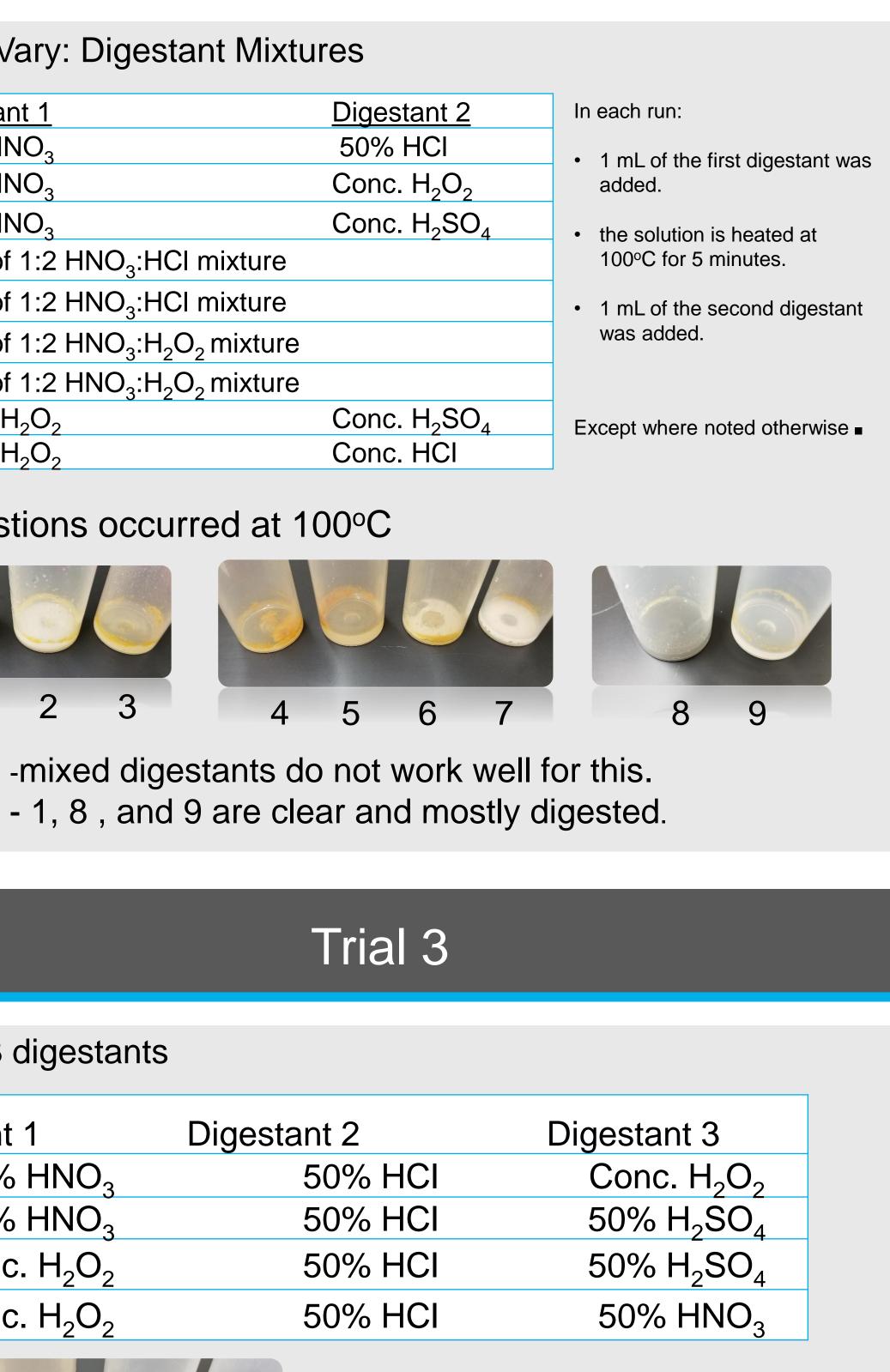

of Digestant trated

ng

digest.

 H_2SO_4 $_{2}O_{2}$ Conc. 25%

amples.


Trial 2

Trial 2: Vary: Digestant Mixtures

	Digestant 1	Digestant 2
1	50% HNO ₃	50% HCI
2	50% HNO ₃	Conc. H ₂ O
3	50% HNO ₃	Conc. H_2SC
4	1 mL of 1:2 HNO ₃ :HCI mixture	
5	2 mL of 1:2 HNO ₃ :HCI mixture	
6	1 mL of 1:2 HNO ₃ :H ₂ O ₂ mixture	
7	2 mL of 1:2 HNO ₃ :H ₂ O ₂ mixture	
8	Conc. H_2O_2	Conc. $H_2S($
9	Conc. H_2O_2	Conc. HCI

all Digestions occurred at 100°C

-mixed digestants do not work well for this.

Trial 3: 3 digestants

Digestant 1	Digestant 2
50% HNO ₃	50% HCI
50% HNO ₃	50% HCI
Conc. H_2O_2	50% HCI
Conc. H ₂ O ₂	50% HCI

-all samples digested, but solution 3 didn't have undissolved solids.

Acknowledgments

I would like to thank to the faculty and staff at Black Hills State University and the Sanford Underground Laboratory, and NSF for their support. Underground Research Facili outh Dakota Science and Technology Author ALVERNO Black Hills State University COLLEGEGE

