Solution to FiveThirtyEight Riddler

Dan Swenson, Black Hills State University

May 17, 2019

1 Intro

This is a solution to the Riddler Classic from May 17, 2019. See problem statement here.

First, we'd like to know the probability of the living army emerging victorious, if there are x living soldiers, and y undead soldiers. Let $V(x, y)$ denote this probability.

Given x living and y undead soldiers, if the next single-combat duel is won by the living soldier, then there will be x living and $(y-1)$ undead soldiers. Otherwise, we'll have (living, dead) $=(x-1, y+1)$. Each duel is a $50-50$ affair, so

$$
V(x, y)=\left(\frac{1}{2}\right) V(x-1, y+1)+\left(\frac{1}{2}\right) V(x, y-1)
$$

Also, clearly $V(x, 0)=1$ if $x>0$, and $V(0, y)=0$ if $y>0$. (We don't need to worry about what happens if x and y are both 0 ; assuming both armies start out with a positive number of soldiers, there will always be someone left standing on one side or the other.)

We can use these initial conditions and equation (\star) to calculate $V(x, y)$ for all pairs of nonnegative integers (x, y). Determine $V(x, y)$ first for points (x, y) which lie along the diagonal line $x+y=1$, then for all points on the line $x+y=2$, and so on. Along a given diagonal $x+y=n$, start at $(1, n-1)$, then $(2, n-2)$, and so on until you reach $(n-1,1)$. (The probabilities $V(n, 0)=1$ and $V(0, n)=0$ were already determined.)

The first few values we get by this procedure are shown here (the x-axis is along the bottom row; the y-axis is along the left-hand column):

```
0/64
0/32 1/128
0/16 1/64 10/256
    0/8
    0/4 1/16 
    0/2 1/8 
    0/1
0/0.5
    1/1 }4/4 16/16 64/64 256/256 1024/1024 4096/4096 
```

To determine the value labeled (?) from this information, we would take $\frac{1}{2}\left(\frac{56}{512}\right)+\frac{1}{2}\left(\frac{176}{512}\right)$. The result is $\frac{232}{1024}$.

Above, we have made no attempt to reduce the fractions. Thus, the denominator of $V(x, y)$ is easily seen to be $4^{x-1} \cdot 2^{y}$, and we have written the 1's across the bottom in this form, as well as the 0's along the left-hand column. (Note: we get $0 / 0.5$ for the probability when $x=0$ and $y=1$. It's still 0 , though.) It remains to find the numerator, which (when x and y are both positive) is simply the sum of the numerator directly below (x, y), and the numerator diagonally above and to the left of (x, y).

2 A formula

Proposition 2.1 The numerator at (x, y) is equal to

$$
\sum_{i=x+y}^{2 x+y-1}\binom{2 x+y-1}{i}
$$

That is,

$$
V(x, y)=\frac{\sum_{i=x+y}^{2 x+y-1}\binom{2 x+y-1}{i}}{4^{x-1} 2^{y}}
$$

Proof: This is by strong induction. Along the y-axis (where $x=0$), the numerator should be 0 , and the formula gives

$$
\sum_{i=x+y}^{2 x+y-1}\binom{2 x+y-1}{i}=\sum_{i=y}^{y-1}\binom{y-1}{i}
$$

which is the empty sum, hence 0 . At $y=0$, on the other hand, we get

$$
\begin{gathered}
\sum_{i=x}^{2 x-1}\binom{2 x-1}{i}=\frac{1}{2}\left(\sum_{i=x}^{2 x-1}\binom{2 x-1}{i}+\sum_{i=x}^{2 x-1}\binom{2 x-1}{i}\right) \\
=\frac{1}{2}\left(\sum_{j=0}^{x-1}\binom{2 x-1}{j}+\sum_{i=x}^{2 x-1}\binom{2 x-1}{i}\right)=\frac{1}{2}\left(2^{2 x-1}\right)=4^{x-1}=4^{x-1} 2^{y},
\end{gathered}
$$

so the numerator equals the denominator, and the probability is 1 , as desired. Here we have used the substitution $j=2 x-1-i$, and the very standard fact that $\binom{N}{k}=\binom{N}{N-k}$, which is easy to see by the factorial formula. We have also used the standard fact that $\sum_{k=0}^{N}\binom{N}{k}=2^{N}$.

Now, for a given point (x, y), let $N(x, y)$ denote the desired numerator (so $N(x, y)=V(x, y) 4^{x-1} 2^{y}$). For a given point (x, y), with $x, y>0$, we saw that $N(x, y)=N(x-1, y+1)+N(x, y-1)$. So by our induction hypothesis:

$$
\begin{gathered}
N(x, y)=\sum_{i=(x-1)+(y+1)}^{2(x-1)+(y+1)-1}\binom{2(x-1)+(y+1)-1}{i}+\sum_{i=x+(y-1)}^{2 x+(y-1)-1}\binom{2 x+(y-1)-1}{i} \\
=\sum_{i=x+y}^{2 x+y-2}\binom{2 x+y-2}{i}+\sum_{i=x+y-1}^{2 x+y-2}\binom{2 x+y-2}{i}
\end{gathered}
$$

Now, we take summands from the left-hand sum, and pair them off with summands from the right-hand sum. However, there is one "extra" summand in the right-hand sum, which won't be paired with anything. The result is

$$
N(x, y)=\binom{2 x+y-2}{2 x+y-2}+\sum_{i=x+y}^{2 x+y-2}\left(\binom{2 x+y-2}{i}+\binom{2 x+y-2}{i-1}\right)
$$

The "extra unpaired" binomial coefficient is equal to 1 . Now the "Pascal's Triangle" identity, applied to each of the pairs of summands, yields

$$
\begin{gathered}
N(x, y)=1+\sum_{i=x+y}^{2 x+y-2}\binom{2 x+y-1}{i}=\binom{2 x+y-1}{2 x+y-1}+\sum_{i=x+y}^{2 x+y-2}\binom{2 x+y-1}{i} \\
=\sum_{i=x+y}^{2 x+y-1}\binom{2 x+y-1}{i} .
\end{gathered}
$$

So, we have

$$
\begin{aligned}
& V(x, y)=\frac{1}{4^{x-1} 2^{y}} \sum_{i=x+y}^{2 x+y-1}\binom{2 x+y-1}{i} \\
& =\frac{1}{2^{2 x-2} 2^{y}}\left(\sum_{i=0}^{2 x+y-1}\binom{2 x+y-1}{i}-\sum_{i=0}^{x+y-1}\binom{2 x+y-1}{i}\right) \\
& =\frac{2}{2^{2 x-1+y}}\left(2^{2 x+y-1}-\sum_{i=0}^{x+y-1}\binom{2 x+y-1}{i}\right) \\
& =2\left(1-\frac{1}{2^{2 x+y-1}} \sum_{i=0}^{x+y-1}\binom{2 x+y-1}{i}\right) \\
& =2-\frac{1}{2^{2 x+y-1}} \sum_{i=0}^{x+y-1}\binom{2 x+y-1}{i}-\frac{1}{2^{2 x+y-1}} \sum_{i=0}^{x+y-1}\binom{2 x+y-1}{2 x+y-1-i} \\
& =2-\frac{1}{2^{2 x+y-1}}\left(\sum_{i=0}^{x+y-1}\binom{2 x+y-1}{i}+\sum_{j=x}^{2 x+y-1}\binom{2 x+y-1}{j}\right) \\
& =2-\frac{1}{2^{2 x+y-1}}\left(\sum_{i=0}^{2 x+y-1}\binom{2 x+y-1}{i}+\sum_{i=x}^{x+y-1}\binom{2 x+y-1}{i}\right) \\
& =2-\frac{1}{2^{2 x+y-1}}\left(2^{2 x+y-1}+\sum_{i=x}^{x+y-1}\binom{2 x+y-1}{i}\right) \\
& =1-\frac{1}{2^{2 x+y-1}} \sum_{i=x}^{x+y-1}\binom{2 x+y-1}{i}
\end{aligned}
$$

This is the probability that the living army wins. Thus:

Theorem 2.2

$$
P(\text { undead army wins })=\frac{1}{2^{2 x+y-1}} \sum_{i=x}^{x+y-1}\binom{2 x+y-1}{i} .
$$

Corollary 2.3

$$
P(\text { undead army wins })=
$$

$P($ between x and $(x+y-1)$ Heads in $(2 x+y-1)$ flips of a fair coin $)$.
Proof: Both sides are equal to $\frac{1}{2^{2 x+y-1}} \sum_{i=x}^{x+y-1}\binom{2 x+y-1}{i}$.

3 Examination of small values

Our goal is to find values of x and y for which $V(x, y)$ is (approximately) $\frac{1}{2}$. For small values of y, it is easy to find the smallest x-value for which $V(x, y) \geq \frac{1}{2}$. Thus, for a given number of undead soldiers, this corresponding x-value would be the minimum number of living soldiers required to give the living army at least a 50% chance of winning.

The first several such values are

y	x
1	1
2	4
3	9
4	17
5	26
6	38
7	51
8	67
9	85
10	106
\ldots	\ldots
20	431
\ldots	\ldots
30	975
\ldots	\ldots
40	1739
\ldots	\ldots
60	3928
\ldots	\ldots

Conjecturally, it appears that the living army needs slightly more than the square of the number of undead soldiers. We can visualize this in the following way: if the undead army is arranged in a single line, then the living army needs to have a solid square of soldiers whose side length equals the length of the undead line.

However, this relationship is not exact; starting at $y=4$, we need strictly more than y^{2} living soldiers. So, is this really a quadratic relationship, or something else? What happens when y gets larger? If it is a quadratic relationship, then what are the coefficients?

4 Conclusion

We know that for small values of y, the number x of living soldiers required to give the living an even chance of survival is a little more than y^{2}. What about if y is large?

By Corollary 2.3, given y, we want to find x such that
$P($ between x and $(x+y-1)$ Heads in $(2 x+y-1)$ flips of a fair coin $) \approx \frac{1}{2}$
Since y is large, we can use the Normal Approximation to the Binomial Distribution on the left-hand side. For large y, the probability of getting between x and $(x+y-1)$ Heads in $(2 x+y-1)$ flips of a fair coin is approximately

$$
P(x-0.5 \leq u \leq x+y-0.5)
$$

where u follows a normal distribution with mean $\mu=\frac{1}{2}(2 x+y-1)$ and standard deviation $\sigma=\sqrt{\frac{1}{4}(2 x+y-1)}$. (We have applied a "continuity correction" here; there are y values between x and $(x+y-1)$, inclusive, so the width of the interval should be y; we therefore "inflate" the interval $[x, x+y-1]$ by 0.5 on both ends to get the desired interval.) This probability is

$$
\frac{1}{2}\left(1+\operatorname{erf}\left(\frac{x+y-\frac{1}{2}-\frac{1}{2}(2 x+y-1)}{\sqrt{\frac{1}{2}(2 x+y-1)}}\right)\right)-\frac{1}{2}\left(1+\operatorname{erf}\left(\frac{x-\frac{1}{2}-\frac{1}{2}(2 x+y-1)}{\sqrt{\frac{1}{2}(2 x+y-1)}}\right)\right)
$$

where erf is the error function. This simplifies to

$$
\begin{gathered}
\frac{1}{2}\left(\operatorname{erf}\left(\frac{\frac{1}{2} y}{\sqrt{\frac{1}{2}(2 x+y-1)}}\right)\right)-\frac{1}{2}\left(\operatorname{erf}\left(\frac{-\frac{1}{2} y}{\sqrt{\frac{1}{2}(2 x+y-1)}}\right)\right) \\
=\operatorname{erf}\left(\frac{\frac{1}{2} y}{\sqrt{\frac{1}{2}(2 x+y-1)}}\right),
\end{gathered}
$$

since erf is an odd function. So, given y, we want to solve

$$
=\operatorname{erf}\left(\frac{\frac{1}{2} y}{\sqrt{\frac{1}{2}(2 x+y-1)}}\right)=\frac{1}{2}
$$

for x. But, the erffunction is strictly increasing, so there is a unique value of w such that $\operatorname{erf}(w)=\frac{1}{2}$; it is approximately $w=0.4769362762447$. Let α equal this number; we get

$$
\frac{\frac{1}{2} y}{\sqrt{\frac{1}{2}(2 x+y-1)}}=\alpha
$$

Equivalently,

$$
\frac{1}{2} y=\alpha \sqrt{\frac{1}{2}(2 x+y-1) .}
$$

Now just solve for x :

$$
\begin{gathered}
\frac{y^{2}}{4}=\frac{\alpha^{2}}{2}(2 x+y-1) \\
\frac{y^{2}}{4 \alpha^{2}}=x+\frac{y-1}{2} \\
x=\frac{y^{2}}{4 \alpha^{2}}-\frac{y}{2}+\frac{1}{2}
\end{gathered}
$$

Thus

$$
x \approx 1.099054669 y^{2}-0.5 y+0.5 .
$$

Example: If $y=60$, we get $x \approx 3927.097$, so we estimate that we need at least 3928 living soldiers to give ourselves at least a 50% chance of winning. This happens to agree exactly with the value shown in the table.

In fact, for $1 \leq y \leq 60$, the formula $\left\lceil 1.099054669 y^{2}-0.5 y+0.5\right\rceil$ gives the smallest value of x such that $V(x, y) \geq \frac{1}{2}$, except at $y=1, y=9$, and $y=34$, where it is an overestimate of exactly 1 . So it appears that this approximation will be reasonable for large y-values, while either the exact formula given in Theorem 2.2, or the recursive approach from Section 1, can be applied when y is small.

