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1 Intro

This is a solution to the Riddler Classic from May 17, 2019. See problem
statement here.

First, we’d like to know the probability of the living army emerging victo-
rious, if there are x living soldiers, and y undead soldiers. Let V (x, y) denote
this probability.

Given x living and y undead soldiers, if the next single-combat duel is
won by the living soldier, then there will be x living and (y − 1) undead
soldiers. Otherwise, we’ll have (living, dead) = (x− 1, y+ 1). Each duel is a
50− 50 affair, so

V (x, y) =

(
1

2

)
V (x− 1, y + 1) +

(
1

2

)
V (x, y − 1) (?)

Also, clearly V (x, 0) = 1 if x > 0, and V (0, y) = 0 if y > 0. (We don’t need
to worry about what happens if x and y are both 0; assuming both armies
start out with a positive number of soldiers, there will always be someone
left standing on one side or the other.)

We can use these initial conditions and equation (?) to calculate V (x, y)
for all pairs of nonnegative integers (x, y). Determine V (x, y) first for points
(x, y) which lie along the diagonal line x + y = 1, then for all points on
the line x + y = 2, and so on. Along a given diagonal x + y = n, start
at (1, n − 1), then (2, n − 2), and so on until you reach (n − 1, 1). (The
probabilities V (n, 0) = 1 and V (0, n) = 0 were already determined.)

The first few values we get by this procedure are shown here (the x-axis
is along the bottom row; the y-axis is along the left-hand column):
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0/64
0/32 1/128
0/16 1/64 10/256
0/8 1/32 9/128 56/512
0/4 1/16 8/64 46/256 (?)
0/2 1/8 7/32 37/128 176/512
0/1 1/4 6/16 29/64 130/256 562/1024

0/0.5 1/2 5/8 22/32 93/128 386/512 1586/2048
1/1 4/4 16/16 64/64 256/256 1024/1024 4096/4096

To determine the value labeled (?) from this information, we would take
1
2

(
56
512

)
+ 1

2

(
176
512

)
. The result is 232

1024
.

Above, we have made no attempt to reduce the fractions. Thus, the
denominator of V (x, y) is easily seen to be 4x−1 · 2y, and we have written
the 1’s across the bottom in this form, as well as the 0’s along the left-hand
column. (Note: we get 0/0.5 for the probability when x = 0 and y = 1. It’s
still 0, though.) It remains to find the numerator, which (when x and y are
both positive) is simply the sum of the numerator directly below (x, y), and
the numerator diagonally above and to the left of (x, y).

2 A formula

Proposition 2.1 The numerator at (x, y) is equal to

2x+y−1∑
i=x+y

(
2x+ y − 1

i

)
.

That is,

V (x, y) =

∑2x+y−1
i=x+y

(
2x+y−1

i

)
4x−12y

.

Proof: This is by strong induction. Along the y-axis (where x = 0), the
numerator should be 0, and the formula gives

2x+y−1∑
i=x+y

(
2x+ y − 1

i

)
=

y−1∑
i=y

(
y − 1

i

)
,
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which is the empty sum, hence 0. At y = 0, on the other hand, we get

2x−1∑
i=x

(
2x− 1

i

)
=

1

2

(
2x−1∑
i=x

(
2x− 1

i

)
+

2x−1∑
i=x

(
2x− 1

i

))

=
1

2

(
x−1∑
j=0

(
2x− 1

j

)
+

2x−1∑
i=x

(
2x− 1

i

))
=

1

2
(22x−1) = 4x−1 = 4x−12y,

so the numerator equals the denominator, and the probability is 1, as desired.
Here we have used the substitution j = 2x−1− i, and the very standard fact
that

(
N
k

)
=
(

N
N−k

)
, which is easy to see by the factorial formula. We have

also used the standard fact that
∑N

k=0

(
N
k

)
= 2N .

Now, for a given point (x, y), let N(x, y) denote the desired numerator
(so N(x, y) = V (x, y)4x−12y). For a given point (x, y), with x, y > 0, we saw
that N(x, y) = N(x−1, y+1)+N(x, y−1). So by our induction hypothesis:

N(x, y) =

2(x−1)+(y+1)−1∑
i=(x−1)+(y+1)

(
2(x− 1) + (y + 1)− 1

i

)
+

2x+(y−1)−1∑
i=x+(y−1)

(
2x+ (y − 1)− 1

i

)

=

2x+y−2∑
i=x+y

(
2x+ y − 2

i

)
+

2x+y−2∑
i=x+y−1

(
2x+ y − 2

i

)
Now, we take summands from the left-hand sum, and pair them off with
summands from the right-hand sum. However, there is one “extra” summand
in the right-hand sum, which won’t be paired with anything. The result is

N(x, y) =

(
2x+ y − 2

2x+ y − 2

)
+

2x+y−2∑
i=x+y

((
2x+ y − 2

i

)
+

(
2x+ y − 2

i− 1

))
The “extra unpaired” binomial coefficient is equal to 1. Now the “Pascal’s
Triangle” identity, applied to each of the pairs of summands, yields

N(x, y) = 1 +

2x+y−2∑
i=x+y

(
2x+ y − 1

i

)
=

(
2x+ y − 1

2x+ y − 1

)
+

2x+y−2∑
i=x+y

(
2x+ y − 1

i

)

=

2x+y−1∑
i=x+y

(
2x+ y − 1

i

)
. �

3

https://en.wikipedia.org/wiki/Binomial_coefficient#Factorial_formula
https://en.wikipedia.org/wiki/Binomial_coefficient#Sums_of_the_binomial_coefficients


So, we have

V (x, y) =
1

4x−12y

2x+y−1∑
i=x+y

(
2x+ y − 1

i

)

=
1

22x−22y

(
2x+y−1∑

i=0

(
2x+ y − 1

i

)
−

x+y−1∑
i=0

(
2x+ y − 1

i

))

=
2

22x−1+y

(
22x+y−1 −

x+y−1∑
i=0

(
2x+ y − 1

i

))

= 2

(
1− 1

22x+y−1

x+y−1∑
i=0

(
2x+ y − 1

i

))

= 2− 1

22x+y−1

x+y−1∑
i=0

(
2x+ y − 1

i

)
− 1

22x+y−1

x+y−1∑
i=0

(
2x+ y − 1

2x+ y − 1− i

)

= 2− 1

22x+y−1

(
x+y−1∑
i=0

(
2x+ y − 1

i

)
+

2x+y−1∑
j=x

(
2x+ y − 1

j

))

= 2− 1

22x+y−1

(
2x+y−1∑

i=0

(
2x+ y − 1

i

)
+

x+y−1∑
i=x

(
2x+ y − 1

i

))

= 2− 1

22x+y−1

(
22x+y−1 +

x+y−1∑
i=x

(
2x+ y − 1

i

))

= 1− 1

22x+y−1

x+y−1∑
i=x

(
2x+ y − 1

i

)
This is the probability that the living army wins. Thus:

Theorem 2.2

P (undead army wins) =
1

22x+y−1

x+y−1∑
i=x

(
2x+ y − 1

i

)
. �

Corollary 2.3
P (undead army wins) =

P (between x and (x+ y − 1) Heads in (2x+ y − 1) flips of a fair coin).

Proof: Both sides are equal to 1
22x+y−1

∑x+y−1
i=x

(
2x+y−1

i

)
. �
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3 Examination of small values

Our goal is to find values of x and y for which V (x, y) is (approximately)
1
2
. For small values of y, it is easy to find the smallest x-value for which
V (x, y) ≥ 1

2
. Thus, for a given number of undead soldiers, this corresponding

x-value would be the minimum number of living soldiers required to give the
living army at least a 50% chance of winning.

The first several such values are

y x
1 1
2 4
3 9
4 17
5 26
6 38
7 51
8 67
9 85
10 106
. . . . . .
20 431
. . . . . .
30 975
. . . . . .
40 1739
. . . . . .
60 3928
. . . . . .

Conjecturally, it appears that the living army needs slightly more than
the square of the number of undead soldiers. We can visualize this in the
following way: if the undead army is arranged in a single line, then the living
army needs to have a solid square of soldiers whose side length equals the
length of the undead line.

However, this relationship is not exact; starting at y = 4, we need strictly
more than y2 living soldiers. So, is this really a quadratic relationship, or
something else? What happens when y gets larger? If it is a quadratic
relationship, then what are the coefficients?
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4 Conclusion

We know that for small values of y, the number x of living soldiers required
to give the living an even chance of survival is a little more than y2. What
about if y is large?

By Corollary 2.3, given y, we want to find x such that

P (between x and (x+ y − 1) Heads in (2x+ y − 1) flips of a fair coin) ≈ 1

2

Since y is large, we can use the Normal Approximation to the Binomial
Distribution on the left-hand side. For large y, the probability of getting
between x and (x + y − 1) Heads in (2x + y − 1) flips of a fair coin is
approximately

P (x− 0.5 ≤ u ≤ x+ y − 0.5)

where u follows a normal distribution with mean µ = 1
2
(2x + y − 1) and

standard deviation σ =
√

1
4
(2x+ y − 1). (We have applied a “continuity

correction” here; there are y values between x and (x + y − 1), inclusive,
so the width of the interval should be y; we therefore “inflate” the interval
[x, x+y−1] by 0.5 on both ends to get the desired interval.) This probability
is

1

2

1 + erf

x+ y − 1
2
− 1

2
(2x+ y − 1)√

1
2
(2x+ y − 1)

−1

2

1 + erf

x− 1
2
− 1

2
(2x+ y − 1)√

1
2
(2x+ y − 1)


where erf is the error function. This simplifies to

1

2

erf
 1

2
y√

1
2
(2x+ y − 1)

− 1

2

erf
 −1

2
y√

1
2
(2x+ y − 1)



= erf

 1
2
y√

1
2
(2x+ y − 1)

 ,

since erf is an odd function. So, given y, we want to solve

= erf

 1
2
y√

1
2
(2x+ y − 1)

 =
1

2
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for x. But, the erf function is strictly increasing, so there is a unique value
of w such that erf(w) = 1

2
; it is approximately w = 0.4769362762447. Let α

equal this number; we get

1
2
y√

1
2
(2x+ y − 1)

= α.

Equivalently,

1

2
y = α

√
1

2
(2x+ y − 1).

Now just solve for x:
y2

4
=
α2

2
(2x+ y − 1)

y2

4α2
= x+

y − 1

2

x =
y2

4α2
− y

2
+

1

2

Thus
x ≈ 1.099054669y2 − 0.5y + 0.5.

Example: If y = 60, we get x ≈ 3927.097, so we estimate that we need at
least 3928 living soldiers to give ourselves at least a 50% chance of winning.
This happens to agree exactly with the value shown in the table.

In fact, for 1 ≤ y ≤ 60, the formula d1.099054669y2 − 0.5y + 0.5e gives
the smallest value of x such that V (x, y) ≥ 1

2
, except at y = 1, y = 9, and

y = 34, where it is an overestimate of exactly 1. So it appears that this
approximation will be reasonable for large y-values, while either the exact
formula given in Theorem 2.2, or the recursive approach from Section 1, can
be applied when y is small.
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