The Proportion of Comets in the Card

Game SET
April 13, 2018

Dan Swenson, Black Hills State University

N
5 e
&




The game of SET

» The SET deck may be represented as D = 73



The game of SET

» The SET deck may be represented as D = 73
» Four dimensions: Number, Color, Shape, Shading



The game of SET

» The SET deck may be represented as D = 73
» Four dimensions: Number, Color, Shape, Shading

» A set is a collection of 3 cards, whose sum is the zero
vector



The game of SET

» The SET deck may be represented as D = 73
» Four dimensions: Number, Color, Shape, Shading

» A set is a collection of 3 cards, whose sum is the zero
vector

» (Such a collection is a line in the four-dimensional affine
space D)



The game of SET

The SET deck may be represented as D = Z3
Four dimensions: Number, Color, Shape, Shading

v

v

» A set is a collection of 3 cards, whose sum is the zero

vector

» (Such a collection is a line in the four-dimensional affine
space D)

» Two cards uniquely determine a line (set):

A+B+(C=0 <+ C=-A-B



The game of SET

The SET deck may be represented as D = Z3
Four dimensions: Number, Color, Shape, Shading
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» A set is a collection of 3 cards, whose sum is the zero

vector

» (Such a collection is a line in the four-dimensional affine
space D)

» Two cards uniquely determine a line (set):

A+B+(C=0 <+ C=-A-B

Fact: If A and B are distinct, then A, B, and (—A — B) are all
distinct.
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According to [1], a comet is a collection of 9 cards which sum
to the zero vector.

“It follows that for every eight cards, there is a unique ninth
card that makes a comet. However, it may happen that the
ninth card needed to make a comet is one of the eight cards
already present.

“This leads to the interesting open question: What is the
probability that nine cards drawn at random are a comet?”

The denominator is the number of 9-card subsets of the deck:
(891) = 260, 887,834, 350

Suffices to count the number of those which sum to 0.
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import itertools

all_cards = [p for p in itertools.product(range(3),
repeat = 4)]

for k in xrange(10):
print sum(all(sum(x[i] for x in p)%3 ==
for i in xrange(4))
for p in itertools.combinations(all_cards, k))
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subsets of size k that sum to 0

running time (seconds)
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(I gave up before | got to k = 9.)

0.01
0.01
0.02
0.23
3.52
57.48
787.14



This site is supported by donations to The OEIS Foundation.

THE ON-LINE ENCYCLOPEDIA
OF INTEGER SEQUENCES®

founded in 1964 by N. ]. A. Sloane

40, 1080, 20540, 316316 | Search | Hints

Search: seq:40,1080,20540,316316
Sorry, but the terms do not match anything in the table.

If your sequence is of general interest, please submit it using the form
provided and it will (probably) be added to the OEIS! Include a brief
description and if possible enough terms to fill 3 lines on the screen. We need
at least 4 terms.

Search completed in 0.004 seconds

The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .
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Heuristically, the answer should be close to %, but maybe not

equal.

If we sampled the cards with replacement then the ninth card
would have probability 8—11 of being the one that we want.

“However, [since we draw cards without replacement] it may
happen that the ninth card needed to make a comet is one of

the eight cards already present.”

Suffices to count the 8-card subsets which already do contain

the “required” card:
(—Zx) €S
xeS
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OK, let's say S is a collection of 7 cards, and
d=(Y>,csx) €S. Infact, let's say d is the 7th card:

Zx:x1+x2+...+x6+x7

X=X +X+ ...+ Xg+ X7
0:X1+X2—|—...—|—X6
So, the first 6 cards must have summed to O.

To count the 9-card subsets summing to 0, it suffices to count
the 6-card subsets summing to 0. (!!)

(Some bookkeeping remains: have to deal with over-counting,
etc.)
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Define
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C = {SQ D‘ (Zx) =0, and |§| :k},
XES

, and by = |Byl, and ¢, = | Cyl.

and let a, = |Ax

(We originally wanted cy.)



The Recurrence Relations

Theorem

k1 = (c)(81 — k)

81
bry1 = <k) — ak

(5) = b
k+1

Ck+1 =
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Generalizations

Let V be a finite vector space in characteristic p > 0, and
suppose you want to count the number of k-subsets of V
which sum to 0.

We can do this in terms of (k — 1)-subsets of V which satisfy
some other condition. (...And so on.)

nAk:{Sg Vn(Zv) €S, and ]5\2/{}
veS

A= {Sg v) (Zv) —0, and |S| :k}.
ves

Let's write ,ax = |,Ax|.



Theorem
For k > 0:

L (W) = p-naka
co9dk — k 5

13k = woak-1 (|V] = (k= 1)),
and for n ¢ {1, 00},

ax = VI — a
ndk k—1 (ljn) k—1-

Further, we have the initial values

{o, if n # 00
ndo =

1, ifn=00
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Corollary

Fork >0 and ne{1,...,p— 1,00}, we can write ,ay in
terms of (_»_ya_1, where by 1"~ we mean n- (1 —n)~*
(mod p), and in particular we define - = —1 = p — 1, and

1 _
7 = oo. U

This o(n) = " is a permutation on {1,...,p — 1,00}, and

its order is p (it is a p-cycle.)

To see this, notice that ¢ is a fractional linear transformation;

it can be written as
1 0
-1 1

To calculate ,ag, visit all the other ,,a, sequences, and return
to pa. after exactly p steps; i.e., at ,ax_p.
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Example
Suppose V = 73, and we wish to count the number of subsets
of size 18 whose sum is 0. That is, we want . ais.

We know 18 = 4 (mod 7), so we will need to visit a4 at
some point. We calculate 0*(c0) = 5, so we want to start at

5d0-
The initial conditions say that ,,ap = 0 unless m = oo.

Next, o~*(n) = T4, S0 we can calculate ;1531 = 2a1 in
terms of 5ag.

Next we calculate 3a;, and gaz, and a4, and keep going until
we get to ,ais.

This procedure allows us to calculate only the coefficients that
we need.
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(The permutation o in characteristic 7 and characteristic 5)
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