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The game of SET

I The SET deck may be represented as D = Z4
3

I Four dimensions: Number, Color, Shape, Shading

I A set is a collection of 3 cards, whose sum is the zero
vector

I (Such a collection is a line in the four-dimensional affine
space D)

I Two cards uniquely determine a line (set):

A + B + C = 0 ⇐⇒ C = −A− B

Fact: If A and B are distinct, then A, B , and (−A− B) are all
distinct.
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According to [1], a comet is a collection of 9 cards which sum
to the zero vector.
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“It follows that for every eight cards, there is a unique ninth
card that makes a comet. However, it may happen that the
ninth card needed to make a comet is one of the eight cards
already present.

“This leads to the interesting open question: What is the
probability that nine cards drawn at random are a comet?”

The denominator is the number of 9-card subsets of the deck:(
81

9

)
= 260, 887, 834, 350

Suffices to count the number of those which sum to 0.∑
x∈S

x = 0
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Some code

import itertools

all_cards = [p for p in itertools.product(range(3),

repeat = 4)]

for k in xrange(10):

print sum(all(sum(x[i] for x in p)%3 == 0

for i in xrange(4))

for p in itertools.combinations(all_cards, k))



OK, this is taking a while. . .

k subsets of size k that sum to 0 running time (seconds)
0 1 0.01
1 1 0.01
2 40 0.02
3 1080 0.23
4 20540 3.52
5 316316 57.48
6 4007016 787.14

(I gave up before I got to k = 9.)
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I Idea: if you just wanted an estimate, you could try taking
9-card subsets at random (Monte Carlo estimation)

I These simulations suggest that the proportion might be
around 0.01234? Maybe 0.012345? Is the next digit a 6?

I What number would this be?

0.01234567 . . . =
1

100
+

2

1000
+

3

10000
+. . . =

1

100

∑
k=0

k

(
1

10

)k−1

. . . (use Taylor series or something) . . .

=
1

81
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Heuristically, the answer should be close to 1
81

, but maybe not
equal.

If we sampled the cards with replacement then the ninth card
would have probability 1

81
of being the one that we want.

“However, [since we draw cards without replacement] it may
happen that the ninth card needed to make a comet is one of
the eight cards already present.”

Suffices to count the 8-card subsets which already do contain
the “required” card: (

−
∑
x∈S

x

)
∈ S
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OK, let’s say S is a collection of 8 cards, and
d =

(
−
∑

x∈S x
)
∈ S . In fact, let’s say d is the 8th card:

∑
x∈S

x = x1 + x2 + . . . + x7 + x8

−x8 = x1 + x2 + . . . + x7 + x8

−2x8 = x1 + x2 + . . . + x7

x8 = x1 + x2 + . . . + x7

So, the first 7 cards must not have contained their sum.
Suffices to count the 7-card subsets which do contain their
sum: (∑
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(Some bookkeeping remains: have to deal with over-counting,
etc.)
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The Recurrence Relations

Define

Ak =

{
S ⊆ D

∣∣∣(∑
x∈S

x

)
∈ S , and |S | = k

}
,

Bk =

{
S ⊆ D

∣∣∣(−∑
x∈S

x

)
∈ S , and |S | = k

}
,

Ck =

{
S ⊆ D

∣∣∣(∑
x∈S

x

)
= 0, and |S | = k

}
,

and let ak = |Ak |, and bk = |Bk |, and ck = |Ck |.

(We originally wanted c9.)
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The Recurrence Relations

Theorem

ak+1 = (ck)(81− k)

bk+1 =

(
81

k

)
− ak

ck+1 =

(
81
k

)
− bk

k + 1

�



Results

k ak bk ck
0 0 0 1
1 81 1 1
2 80 0 40
3 3160 3160 1080
4 84240 82160 20540
5 1581580 1579500 316316
6 24040016 24040016 4007016
7 300526200 300500200 42928600
8 3176716400 3176690400 397089550
9 28987537150 28987537150 3220840350

In particular,

1

81
6=

c9(
81
9

) =
3220840350

260887834350
=

550571

44596211
≈ 0.01234569
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Generalizations

Let V be a finite vector space in characteristic p > 0, and
suppose you want to count the number of k-subsets of V
which sum to 0.

We can do this in terms of (k − 1)-subsets of V which satisfy
some other condition.

(. . . And so on.)

nAk =

{
S ⊆ V

∣∣∣n(∑
v∈S

v

)
∈ S , and |S | = k

}

∞Ak =

{
S ⊆ V

∣∣∣(∑
v∈S

v

)
= 0, and |S | = k

}
.

Let’s write nak = |nAk |.
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Theorem
For k > 0:

∞ak =

( |V |
k−1

)
− (p−1)ak−1

k
,

1ak = ∞ak−1 (|V | − (k − 1)) ,

and for n /∈ {1,∞},

nak =

(
|V |
k − 1

)
− ( n

1−n)ak−1.

Further, we have the initial values

na0 =

{
0, if n 6=∞
1, if n =∞

�



Corollary
For k > 0 and n ∈ {1, . . . , p − 1,∞}, we can write nak in
terms of ( n

1−n
)ak−1, where by n

1−n we mean n · (1− n)−1

(mod p), and in particular we define ∞
1−∞ = −1 = p − 1, and

1
1−1 =∞. �

This σ(n) = n
1−n is a permutation on {1, . . . , p − 1,∞}, and

its order is p (it is a p-cycle.)

To see this, notice that σ is a fractional linear transformation;
it can be written as (

1 0
−1 1

)
To calculate nak , visit all the other ma∗ sequences, and return

to na∗ after exactly p steps; i.e., at nak−p.
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Example
Suppose V = Z3

7, and we wish to count the number of subsets
of size 18 whose sum is 0. That is, we want ∞a18.

We know 18 ≡ 4 (mod 7), so we will need to visit ∞a4 at
some point. We calculate σ4(∞) = 5, so we want to start at

5a0.

The initial conditions say that ma0 = 0 unless m =∞.

Next, σ−1(n) = n
1+n

, so we can calculate σ−1(5)a1 = 2a1 in
terms of 5a0.

Next we calculate 3a2, and 6a3, and ∞a4, and keep going until
we get to ∞a18.

This procedure allows us to calculate only the coefficients that
we need.
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Thank you!
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(The permutation σ in characteristic 7 and characteristic 5)



References

[1] Sets, Planets, and Comets. Mark Baker, Jane Beltran,
Jason Buell, Brian Conrey, Tom Davis, Brianna Donaldson,
Jeanne Detorre-Ozeki, Leila Dibble, Tom Freeman, Robert
Hammie, Julie Montgomery, Avery Pickford, and Justine
Wong. The College Mathematics Journal, Vol. 44, No. 4
(September 2013), pp. 258-264


